
WP4 – Resource Management
Components

Deliverable D4.4
Resource Management Components - V2

WP4 – Resource Management Components : Deliverable 4.4 – Resource Management
Components V2
by Giuseppe Lipari, Luigi Palopoli, Luca Marzario, Tommaso Cucinotta

Published February 2004
Copyright © 2004 by OCERA Consortium

Table of Contents
1 Introduction ..1

1.1Structure of the new QoS components...1
2 The IRIS algorithm..3

2.1 Description of the problem..3
2.2 The IRIS algorithm..5
2.3 Implementation in OCERA...17

3 Feedback Scheduler ..20
3.1 Motivation and background...20
3.2 Novel contributions...20
3.3 System model..21
3.4 The feedback controller...24
3.5 Implementation of the QoS manager...29
3.6 Experimental results..31

Document Presentation

Project Coordinator

Organisation:UPVLC
Responsible person:Alfons Crespo

Address:Camino Vera, 14, 46022 Valencia, Spain
Phone:+34 963877576

Fax:+34 963877576
Email:alfons@disca.upv.es

Participant List

Role Id. Participant Name Acronym Country
CO 1 Universidad Politecnica de Valencia UPVLC E
CR 2 Scuola Superiore Santa Anna SSSA I
CR 3 Czech Technical University in Prague CTU CZ
CR 4 CEA/DRT/LIST/DTSI CEA FR
CR 5 Unicontrols UC CZ
CR 6 MNIS MNIS FR
CR 7 Visual Tools S.A. VT E

Document version

Release Date Reason of change
1_0 15/01/2003 First release

1 Introduction
In the last phase of Workpackage 4, we have refined the implementation of some QoS
components and in particular:

• a new resource reservation algorithm, called IRIS, that improves over the CBS
algorithm. It will be described in Chapter 2.

• a new module called QoS Supervisor that performs an admission control. In this way
we separated the issue of admission control from the problem of scheduling, so that
we can implement different admission control policies. Again, this is described in
Chapter 2.

• A set of new feedback scheduling policies. They improve the behavior of the
algorithms presented in Deliverable 4.2, and they are described in Chapter 3.

Other components, like the QoS library and the QoS monitor have not been modified
since last version. In the following section, we summarize the architecture of the new
QoS management modules in the OCERA kernel.

1.1Structure of the new QoS components

The architecture of the QoS components is shown in Figure 1.1 . All components are
provided as dynamic loadable modules except the QMGR modules which can be
provided as libraries or as modules.

The QSPV module is the QoS Supervisor that provides the admission control policy,
whereas a set of QoS management modules implement the QoS control techniques
described above.

This orthogonal separation among the different components is very useful because it
permits to change ``on-the-fly'' the behaviour of any of the components and try out
different feedback control architectures. In particular, the CPU allocation mechanism
(the resource reservation scheduler) is separated from the policy implemented by the
QoS modules. Moreover, both the scheduler and the controller are not embedded in the
operating system and they can be dynamically changed at run-time by simply
inserting/removing kernel modules. Finally, it is possible to have at the same time two or
more control algorithms running into the same system, each one serving a group of
different tasks.

OCERA IST 35102 1

Scheduling module
The QRES module provides resource reservation scheduling. The resource reservation
algorithm can be one between the CBS [Abe98], the GRUB [Lip00] or the IRIS [mar04].
The first two algorithm have been described in Deliverable 4.2, whereas the IRIS
algorithm will be described in Chapter 2. It is possible to configure the QRES module to
implement one of the above algorithm at compile time.

QoS Supervisor module

When a task is activated in the system requiring a certain bandwidth U i , an admission
test must be performed. The QoS supervisor module implements different admission
policies depending on the user needs.

The QoS Manager module
We provide different QoS management modules (denoted with QMGR1 and QMGR2
in figure 1.1) that can coexist in the same system. Each module provides a different
controller strategy and can serve more than one task. For a description of the possible
controller strategies, please see Chapter 3.

OCERA IST 35102 2

Figure 1.1 Architecture of QoS components

2 The IRIS algorithm
During the first phase of the project, we developed two schedulers (CBS [Abe98] and
GRUB [Lip00]), a resource manager (the feedback scheduler), a user library and
monitoring tools. The two schedulers are able to provide temporal isolation and real-time
guarantees to soft real-time tasks as well as to legacy Linux processes. In addition, the
GRUB scheduler is able to reclaim unused bandwidth. The reclaimed bandwidth can be
used to give more bandwidth to processes that need to execute more and to save energy
by reducing the frequency of the processor.

However, both schedulers suffer some problem in certain situation. When using these
schedulers to execute a non-periodic legacy Linux application a particular problem that
we call deadline aging can happen. The problem has been described in Deliverable 4.3.
We also proposed a possible solution, by sketching the IRIS algorithm, a new bandwidth
reservation algorithm that has been designed to purposely solve the deadline aging
problem. In this chapter we present the complete description of the IRIS algorithm.

2.1 Description of the problem

The problem under investigation was presented in deliverable D4.3. In this section we
summarize the problem for completeness of the report.

The Constant Bandwidth Server presents some problems when serving a non-periodic
process that consist of one single instance that runs indefinitely. For example, in Figure
2.1 we show the schedule generated by the CBS when serving two non periodic tasks
1 and 2 . Task 2 arrives in the system after some time, when the deadline

of the first server is already far away. As a consequence, task 1 cannot execute for a
while. We refer to this problem as the deadline aging problem.

The previous behavior is not desirable for many reason. In fact, the main goal of any
resource reservation algorithm is to provide each process Q units of budget every interval
of time P.

This problem is partially solved by the GRUB algorithm. Consider again the previous
example. In Figure 2.2 we show the schedule produced by the GRUB algorithm.

OCERA IST 35102 3

Figure 2.1: Problem with CBS.

Algorithm GRUB maintains a variable U that keeps track of the total bandwidth used
by the active processes. It uses this information to reclaim unused bandwith and give it
entirely to the executing task (GRUB stands for greedy reclamation of unused
bandwidth). Therefore, in interval [0,7] when the first process is the only active process,
there is not unnecessary postponing of the server deadline. For this reason, when the
second process arrives, the deadline of the first server is not too far and the deadline
aging problem does not happen.

However, GRUB suffers from another undesirable problem that is in some way related to
the previous one. Consider The following example.

Example 2. Consider a system scheduled by the GRUB algorithm consisting of a
process that is always active and is served by a server with budget Q1=1 and period
P1=4 . Another process is a periodic process with period T 2=16 that is served

by a CBS with budget Q2=12 and P2=16 . The resulting schedule is shown in
Figure 2.3.

As you can see, the first process is not scheduled as we expect. In particular, it executes
as it were served by a server with budget Q '=4 and period P '=16 . Notice also
that this behavior depends by the parameters of the other servers in the system. For
example, if the second server had a period of P=20 , the first process would be
scheduled as it were served by a server with budget Q '=5 and P '=20 .

It is quite clear that the problem is caused by the fact that when the budget is exhausted
the process is not suspended, but is inserted again in the ready queue with a new
deadline.

We can solve this problem by introducing the concept of hard reservation. It was first
introduced by Rajkumar [Raj97]. In a hard reservation, when the budget is exhausted, the
process is suspended until the recharging time. In the case of CBS, a hard reservation can
easily be implemented by suspending the process until the server deadline. We could do
this by adding the following rule to the CBS:

Hard Reservation Rule: when the current budget q of the server is 0, the task is
suspended until the current server deadline d . When the time is equal to the server
deadline, the budget is recharged to q=Q , and the deadline is set to d=dP .

OCERA IST 35102 4

Figure 2.2: Same example scheduled by GRUB.

Figure 2.3: Problem with GRUB.

As an example, we apply the previous rule to Example 2. The resulting schedule is
shown in Figure 2.4.

As you can see, the problem is now solved because we forced the first process to be
executed inside its period.

However, even after introducing the Hard Reservation rule, there is still a small problem
that needs to be addressed. It can happen that, in certain cases, the system becomes idle
even if there is some process that needs to be executed. In fact, it can happen that some
process finishes before we expect, while all other processes are suspended waiting for
the recharging time.

Example 3. Consider again the system of Example 2, and suppose that the second
process need to execute only 9.1 units of time. The resulting schedule is shown in Figure
2.5 .

Although the first process is always active, at time t=13.1 the system becomes idle.
The first process is waiting for recharging while the second process has finished its
instance. It is not easy to understand what to do. One possibility would be to recharge the
budget of process 1 immediately. However, this solution can work in this example, but it
is much more difficult to understand what to do when we have many processes in the
system.

The CBS and GRUB algorithms were not designed for providing hard reservations and
the previous case cannot be handled easily. This last problem is quite important in soft
real-time system, where one of the main goals is to optimise the system resources.
Therefore, we should use work-conserving algorithms.

Next, we describe a new scheduling algorithm, based on CBS, that solves all the three
problems described in this section.

2.2 The IRIS algorithm

IRIS (Idle-time Reclaiming Improved Server) is a new scheduling algorithm that allows
the coexistence of hard, soft and non real-time tasks. The proposed algorithm is
specifically designed to handle computational overload. A task that needs more CPU-

OCERA IST 35102 5

Figure 2.4: Schedule of Example 2 with Hard Reservations.

Figure 2.5: Hard reservartions make the algorithm non-work-conserving.

time than reserved can re-use the spare bandwidth, without interfering with the others
tasks. With respect to other reclamation schemes, the novelty of the proposed algorithm
is that the spare bandwidth is fairly distributed among the needing servers. The
effectiveness of the algorithm is demonstrated with an extensive set of experiments. We
also propose a methodology to set scheduling parameters depending on the type of the
task and on the time constraints needed.

System model
In this research, we consider two types of tasks in the system: cyclic tasks and non--
cyclic tasks. A cyclic task i consists of a main loop. At the end of every loop
instance the task blocks waiting for some event. Each execution between two blockings
is called job J i , k . We indicate with C i the worst-case execution time (WCET) of

i . Cyclic tasks can be divided into periodic tasks that wait for a periodic timer

event with period T i ; sporadic tasks that wait for external events with a minimum

inter-arrival time, also called T i ; aperiodic tasks that wait for external events with an

unbounded inter-arrival time. Each job J i , k of a cyclic task i has associated an

arrival time ai , k and a deadline d i , k . We denote with U i
=C i /T i the

utilization factor of task i . Moreover, cyclic tasks can also be divided into two
classes, depending on their criticality: hard real-time and soft real-time. For the hard real-
time tasks, it must be guaranteed that every job completes before its deadline. Soft real-
time task are less critical: deadline miss could result in a performance degradation but
not in a critical fault. We assume that the relative deadline of cyclic tasks is equal to

T i .

Acyclic tasks model batch activities that are continuously active for large intervals of
time, like for example the process of compiling a program, or a long scientific simulation
or calculation, or a control tasks polling an external sensor. Usually, they are not
associated any temporal constraint. However, in some case it may be desirable to execute
them at a certain minimum rate. Therefore, the aim is to assign them a minimum fraction
of the processor bandwidth.

A server is an abstract entity used by the scheduler to reserve a fraction of CPU-time to
a task. Each server S i is characterized by the following parameters: Pi is the

period of the reservation and it characterizes the granularity of reservation; Qi is the

reserved execution time per period; U i is the fraction of reserved CPU-time, also

called utilization factor, and it is defined as U i=
Qi

Pi

. In addition, each server

maintains its own internal variables that are updated by the scheduler depending on the
server rules. One of these variables is the server priority.

The servers are inserted in the priority queue of the scheduler. When a server is selected
by the scheduler because it has the highest priority, the corresponding task is executed.
While a task is executing, the budget of the server is decremented accordingly. We
denote by qi the current budget of server S i . When the budget get exhausted, the

task is stopped until the budget is replenished. We denote with r i , k the time at which
the budget is replenished. In this paper we consider only dynamic server: each server
has a dynamic deadline d i that is used by the scheduler to order tasks in the priority
queue, accordingly with EDF algorithm . Different server algorithms use different

OCERA IST 35102 6

policies for updating qi and d i .

The goal of our research is to design an algorithm that guarantees a minimum fraction of
CPU time to each task (both cyclic and acyclic) in every interval of time of a given
length. This will allow to independently analyze the temporal behavior of each task and
to guarantee hard real-time tasks.

Description of the IRIS algorithm
In this section we describe IRIS.

• Every server can have four states (as shown in Figure 2.6):

a) Inactive, i.e. the server has no pending job and it does not contribute to the total
bandwidth of the system

b) ActiveContending,, i.e. the server has pending jobs and its current budget is
greater than 0.

c) ActiveNonContending, i.e. the server has no pending jobs but its bandwidth still
contributes to the total system bandwidth.

d) Recharging, i.e. the server has a pending job but its current budget is 0 and it has
to wait to be recharged

• The system maintains

a) a ready queue, where all ActiveContending servers are ordered by deadline

b) a recharging queue, where all Recharging servers are ordered by recharging time

c) a suspended queue, where all ActiveNonContending servers are ordered by
inactive time.

OCERA IST 35102 7

Figure 2.6: State diagram of the new algorithm.

d) a total system bandwidth U t  that is the sum of the bandwidths of all the
servers that are not in the Inactive state.

The state diagram for the algorithm is shown in Figure 2.6 The servers change state
according to the following rules:

1. Initially all servers are in the Inactive state

2. If a job arrives at time t

a) If the server is Inactive, then q=Q and d=tP

b) if the server is ActiveContending or Recharging, the arrival is buffered and will be
served later

c) if the server is ActiveNonContending, it becomes active contending and it is
inserted again in the ready queue with the same current budget and deadline

3. When the server executes for  , q=q−

4. If the server is ActiveContending and q=0 , the server reaches the Recharging
state and the recharging time is set to r=d .

5. If the server is in the Recharging state and t=r , then the server become
ActiveContending and q=Q and d=dP .

6. When the job finishes

a) If there is another pending job, the server remains in the ActiveContending state.

b) If there are no pending jobs and td−q Q
P

, the server becomes inactive

c) otherwise, the server becomes ActiveNonContending and the inactive time is set

to i=d−q Q
P

.

7. If the server is ActiveNonContending and t=i , then the server becomes inactive.

8. If at time t no server is in ActiveContending state and there is at least one server in
Recharging state:

a) let j be the first server in the recharging queue (i.e. The one with the smallest
recharging time), and let =r i−t . For every server i in the recharging queue,
r i=r i− .

b) Every server i in the recharging queue with r i=t is removed from the
recharging queue and inserted in the ready queue; its budget is recharged to
q=Q and its deadline is set to d i=tPi .

The way the algorithm works is better explained by an example.

OCERA IST 35102 8

Example 1. Consider a system consisting of 3 tasks,  1 , 2 and  3 . Task
 1 is always active and is assigned a server with budget Q1=1 and period
P1=4 . Task  2 is a periodic real time task with computation time C 2=1 and

period T 2=6 . It is assigned a server with Q2=2 and P2=6 . Task  3 is

always active and it is assigned a sever with Q3=2 and P3=9 .

The system is underutilised, because the sum of the bandwidths of all server is less than
1. Moreover,  2 uses less bandwidth than expected (only 1 unit whereas it is
allocated 2), and we would like to reclaim this exceeding bandwidth to execute the other
two tasks.

The resulting schedule is shown in Figure 2.7. Each activation of a server is represented
with an upward arrow and the corresponding deadline is represented with a downward
arrow. The activation instant and the corresponding deadline are linked by an arc. For
example, task  3 is activated at time 0 with deadline at 9, at time 6 with deadline at
15 and at time 11 with deadline at 20.

Let's now analyse the schedule.

• At time 0 all tasks are ready, and task  1 is the one with the earliest deadline and
execute. At time 1, the budget is 0 and the server goes to the Recharging state. The
server is inserted in the recharging queue with recharging time r1=4 .

• Then tasks  2 is executed and finish its execution at time 2 without exhausting its
budget. It goes to the ActiveNonContending state, with inactive time at 3.

• Task  3 is executed and its budget goes to 0. Like task  1 , it is inserted in the

recharging queue with recharging time r3=9 . Meanwhile, task  2 is now in
the Inactive state.

• At time 4, the recharging time for task  1 is come, so it is put in the

OCERA IST 35102 9

Figure 2.7: Example of schedule with the new algorithm

ActiveContending state and its budget is recharged to q1=1 and its deadline is set
to d 1=8 .

• Task  1 is selected to execute, and its budget become 0 again at time 5. It is then

put again in the Recharging with r1=8 . Note that until now the schedule is the
same as with CBS.

• At time 5, there is not other task in ActiveContending. Therefore, rule 8 is applied.
The earliest recharging time is r1=8 . Therefore, all recharging times are

decremented by =r1−t=3 , with the result that r1=5 and r3=6 . Now,

task  1 is put again in the ready queue with budget recharged to q1=1 and

deadline set at d 1=9 .

• Since it is the only task in the ready queue,  1 executes and again exhaust its

budget and is put again in Recharging with r1=9

• At time 6, task  2 arrives and needs to be executed again with deadline
d 2=12 . Moreover, task  3 recharging time is arrived and it is put in the

ready queue with budget q3=2 and deadline d 3=15

The interested reader can go through the remaining of the schedule to check how the
algorithm works. A few things need to be highlighted. Since task  1 and  3 are
always active and never suspend themselves, they spend their time between state
ActiveContending and Recharging. Task  2 is using less than expected, therefore it
goes through states Inactive, ActiveContending and ActiveNonContending. Note that
there are no idle times, as expected, since there are two tasks that are always active. Note
also that each task executes at least Q units of budget every P.

We also define a simplified version of IRIS, that we call IRIS-HR, for which the warping
rule (8) is not applied. The IRIS-HR is useful in those case in which we want an upper
bound on the amount of time assigned to one application, even in the case of spare
bandwidth left.

Properties of the algorithm
The IRIS algorithm maintains the original CBS schedulability property. It is also a fair
algorithm in the sense that the spare time is equally distributed among the servers that
need to execute more than the reserved CPU time. The following Theorems are reported
here without a proof. The proof of these theorems can be found in [mar04].

Theorem 1 (Schedulability Property)

Given a set of periodic tasks with total utilization factor U p=∑
i=1

N

Ui
 and a set of

IRIS servers with utilization factor U s=∑
i=1

N

U i the whole set is schedulable by EDF

if and only if

U pU s1 .

OCERA IST 35102 10

Theorem 2 (Hard Schedulability)

A hard task i with period T i and WCET C i is schedulable by an IRIS server

with parameters QiC i and Pi=T i if and only if  i is schedulable with
EDF.

Theorem 3 (Minimal execution time guarantee)

Let [t1, t2] be an interval such that server S i , serving task  i , is never

inactive. If t2−t12 Pi−Qi , then  i executes at least Qi unit of time in the

interval [t1, t2] .

An interesting property of IRIS server is that it solves the deadline aging problem.

Theorem 4 (Deadline aging)

If d i is the deadline associated to the server S i at time t , we have that:

∀ i , t , d itPi

The IRIS algorithm distributes the spare time among the reclaiming servers in a fair way:
the spare time of the system is redistributed to the servers proportionally to the reserved
bandwidths. Since the allocation of CPU time is not fluid, we show the property only in
intervals large enough with respect to the periods of the servers.

For simplicity we analyze the case in which the served tasks are always ready to execute.
We denote by U i ' t1, t2 the bandwidth used by server S i in the interval
[t1, t2] :

U i ' t1, t2=
Qi ' t2−Qi ' t1

t2−t1

,

where Qi ' t  is the amount of budget used by server S i until time t .

Theorem 5 (Fairness)

Consider two IRIS servers S i , S j serving tasks that are always ready to execute
(the servers are always in the state active or Re-charging). The following property holds:

∀ t1, t2 : t2−t12 Pmax

U i

U j

t2−t1−2 Pi
t2−t12 P j


U i ' t1, t2
U j ' t1, t2


U i

U j

t2−t12 Pi
t2−t1−2 P j

where Pmax=max Pi , P j .

How to assign IRIS parameters
All the properties mentioned in the previous section allow us to use a bandwidth
reservation strategy to allocate a fraction of the CPU time to each task independently of

OCERA IST 35102 11

the other tasks in the system. In particular, we can execute in the same system different
types of task, cyclic and acyclic, hard and soft. In fact, the reserved bandwidth, if
available at the initial request, is always guaranteed. This guarantee is based on the
reservation period and does not depend on the behavior of other servers.

In this section, we give some suggestions on how to assign the budget and the period to
the different tasks in the the system.

• Hard real-time tasks. Hard real-time tasks can be scheduled directly by EDF or
through a dedicated IRIS server. If we are absolutely sure about their WCET, then we
can schedule them directly under EDF. However, if for some fault, a HRT task
executes more than its computed WCET, some other random task in the system may
miss its deadline. In the worst case, this could jeopardize the CPU. If we want to
avoid this interference, we can assign each hard real-time task an IRIS server, setting

P i to the task's period T i and Qi greater than its estimated WCET. In this
way, the other tasks in the system are protected by possible misbehaviors. This is
useful especially in the developing and debugging phase.

• Soft real-time tasks. In the case of periodic soft real-time tasks, we can set Pi to
the task's period. For aperiodic tasks, the server period should be set equal to the
average response time needed. To set Qi we have more freedom: since setting it to
the WCET may waste the CPU utilization, we can set this parameter to some value
between the task's average execution time and its WCET. The trade off is between the
amount of reserved bandwidth and the number of deadline miss. Notice that, since
IRIS is able to reclaim the spare bandwidth, it may happen that, even by setting the
budget to a small value, the number of missed deadlines is low because of the extra
budget dynamically available due to the reclaiming mechanism.

• Non real-time tasks. These tasks do not have time constraints. However, in many
cases it could be desirable to execute them at a certain rate. In this case a server could
be used to reserve a fraction of CPU time to each task. Pi must be set to the

granularity of reservation, while Qi must be set proportionally to the needed
bandwidth. As an example, we can use a server to reserve a fraction of CPU time to
an interactive task like a shell to control or to monitor the system.

Experiments
In this section, we show the effectiveness of the IRIS algorithm. The goal is to highlight
two important characteristics of IRIS against CBS: good performance in overload
situations, and minimal temporal utilization guarantee. A massive number of tests have
been run using a synthetic workload model. In the following, we describe the simulations
settings and the obtained results.

The task sets for these experiments were generated with the following characteristics:

• Three hard real-time periodic tasks, generated with random C k and T k . The
bandwidth consumed by hard tasks is:

U hard=∑
k=1

3 C k

P k

• Two soft tasks that serve sporadic jobs, whose inter-arrival and execution times are

OCERA IST 35102 12

also randomly generated around the values Qi and Pi . A total of 300 jobs are
generated for each task. The soft load is:

U soft=∑
k=4

5 Qk

Pk

The variable measured is the average soft response time of sporadic tasks, when task sets
are scheduled under IRIS and CBS. Being rt i , j the response time of the job J i , j ,
the average soft response time is defined as follows:

 avsrt i=∑
j=0

j=300 rt i , j

r i , j1−r i , j

In the first experiment, soft tasks consume 15% of the total utilization of the system (
U soft=0.15) while hard task parameters are specified with U hard ranging from

0.2 to 0.6. We assume that the computation time of the jobs (C i , j) is similar to the

budget of the server assigned to the task (Qi). As it can be seen in Figure 2.8, average
soft response time is very similar in IRIS and CBS, although it is slightly lower in the
case of IRIS.

Experiment 2 has been generated with the same characteristics than Experiment 1, except
that an overload situation is forced. We can create an overloaded system if some jobs
have a C i , j much greater than its budget (we call it ''heavy'' jobs). In the simulations,

every 10 activations C i , j=6Qi . The results are shown in Figure 2.9. In this case,
IRIS performs much better than CBS, because CBS suffers from deadline aging, and
when a ''heavy'' job arrives, the budget is replenished several times and the deadline is
moved away. This way, the response time of the ''heavy'' job, and also the response time
of future jobs, is highly increased. However, as IRIS does not replenish the budget

OCERA IST 35102 13

Figure 2.8 Experiment 1

immediately, the jobs that arrive after the ''heavy'' one do not suffer the consequences of
the overload, maintaining a reasonable response time.

In Experiments 3 and 4, hard tasks consumes 35% of the total utilization of the system (
U hard=0.35) while soft tasks parameters Q and P are generated with
U soft ranging from 0.1 to 0.5. Experiment 3 simulates a normal execution (Figure

2.10) while Experiment 4 shows the results in an overload situation (Figure 2.11).

OCERA IST 35102 14

Figure 2.9 Experiment 2

Figure 2.10 Experiment 3

In both experiments, the performance of IRIS is better than CBS, with a great
improvement in the overloaded systems.

The number of missed tasks' deadlines is also an important parameter that must be taken
into account. Figure 2.12 shows the percentage of missed deadlines with both algorithms
for the task sets generated in Experiment 4. The results show that the maximum deadline
misses of IRIS is less than 30%, being always greater in CBS.

Another interesting experiment is to compare the utilization of soft tasks with IRIS and

OCERA IST 35102 15

Figure 2.11 Experiment 4

Figure 2.12 Experiment 5

CBS. In the first experiment, the workload consists of 6 greedy tasks ( 1,. .. , 6),

with Qi and P i randomly generated, except budget for  6 that is Q6=1 .
Task set parameters are generated to have different utilization (from 20 to 80%).

In this case, the variable measured is the distance between two consecutive executions of
task  6 . As this task has Q6=1 , we want to see if the required utilization of the
task is guaranteed for both algorithms. During the simulations, the number of
occurrences of every value of the distance have been counted. The distance between two
consecutive executions has been normalized to the period P6 . Figure 2.13 shows the
results.

As it can be seen, CBS executes with a great variability, and most of the times task
executions are very close. But, due to deadline aging, when the budget is exhausted, the
task scheduled under CBS can stay without executing for a long time. This is the reason
why under CBS, the time between two consecutive executions can be up to 440% of the
task period. However, a task scheduled under IRIS executes most of the times every
period, or less. And the maximum interval between two executions is only 190% (

2 P6−Q6). This property of IRIS is specially important in systems where reducing
jitter is a key issue, such in control systems.

The last experiment consists of measuring the utilization of greedy tasks all over the
execution of the system, and see what happens to utilization when a new greedy task
arrives. The goal is to demonstrate that IRIS is more fair in distributing the idle time than
CBS.

Experiments have been done in the following way: three acyclic tasks  1 ,  2 and
 3 have been generated with server periods ranging from 10 to 30. First activation of

OCERA IST 35102 16

Figure 2.13 Experiment 6

 1 and  2 is set to the initial instant (t=0), while first activation of  3 is set

to instant t=30. The variable measured is
U 1 ' t1, t2

U 1

. Similar results have been

obtained with
U 2 ' t1, t2

U 2

, but in Figure 2.14 are depicted results only for  1 .

Instants t1 and t2 have been chosen to measure utilization in windows that moves
over the total execution of the system. The size of the windows is the largest period the
three tasks. This means that, in Figure 2.14, point 1 in X coordinates means the first
window (t1=0 , t2=maxperiod), point 2 is the second window (t1=1 ,

t2=maxperiod1), and so on.

Figure 2.14 shows that, in CBS, the utilization of  1 rapidly goes to 0 when  3

arrives (t=30). And the same happens to  2 . As a consequence, CBS does not
maintain the utilization required. However, IRIS maintains the required utilization of
 1 , even when new tasks arrives, or even in overload situations.

2.3 Implementation in OCERA

QoS supervisor
As anticipated in Chapter 1, we decided to separate the admission control from the
scheduling algorithm. In this way, the user can customise the admission control policies
to the needs of the applications more easily. This customisation is especially useful when
introducing reservation with varying bandwidth, as in the case of feedback scheduling
(see Chapter 3 for further details).

When a new reservation is created specifying a certain budget Q and a certain period P,

OCERA IST 35102 17

Figure 2.14 Experiment 7

the system must check if there is enough free bandwidth to accommodate for the new
reservation. This admission control is performed by the QoS supervisor module (denote
with QSPV in Figure 1.1). This module intercepts all the calls to the scheduler_setsched
() via the setsched hook (see deliverable D4.2 for an explanation of the scheduling
hooks).

Three different flavors of this module exist, each one implementing a different admission
control policy: saturation, compression and reject. They differ in their response to
requests that cannot be accommodated. In all cases, if the sum of the CPU utilizations of
the existing reservations, plus the utilization of the new reservation, does not exceed the
maximum possible utilization U lub , then the request is forwarded to the setsched
handler of the QRES module; the sched _setscheduler() succeeds and the task will be
scheduled according to the CBS algorithm with the specified parameters.

If there is not enough bandwidth to serve the new request, the action depends on the
selected policy:

• In case the saturation policy is selected, the highest possible budget is assigned to the
task so that the total CPU utilization does not exceed U lub . The setsched handler
of the QRES module is called with the new budget.

• In case the compression policy is selected, all the reservations are recomputed
(``compressed'') so that we can make enough space for the new request. See [Abe99]
[Abe02] for a detailed description of the compression algorithm. For each existing
reservation, the setsched handler of the QRES module is invoked with the new
budget value.

• In case the reject policy is specified, the sched_setscheduler() returns with error and
the task is scheduled in background.

The QSPV module is also used by the QoS Manager to dynamically change the budget
of an existing reservation according to the feedback control algorithm.

Implementation of IRIS
The implementation of the IRIS algorithm is very similar to the implementation of the
CBS algorithm, described in Deliverable D4.1. The scheduler is implemented as a
dynamically loadable module and requires that the “generic sheduler patch” is applied to
the Linux kernel. We do not report here the complete description of the implementation
and remand to Deliverable D4.1. Here, we highlight the differences between the
implementation of the CBS and the implementation of the IRIS scheduler.

In IRIS, a new queue has been defined, the Recharging queue. It is an ordered list of
server descriptors, which contains all servers that are in the Recharging state. The queue
is ordered by increasing recharging time.

A system timer is programmed to the shortest between the following two events:

• The recharging time of the first server in the Recharging queue, if any. When this
event expires, the first server is extracted from the Recharging queue, its current
budget and deadline are recomputed and the server is inserted in the Ready queue;

• The budget exhaustion time of the executing server. When this event occurs, the
executing server is suspended and inserted in the Recharging queue. A new server is

OCERA IST 35102 18

selected for execution from the Ready queue.

Overhead of the implementation
In order to measure the overhead introduced by the qres module in the scheduling
process, we run a test that stress the scheduler, running several process simultaneously.
In particular we run about 50 processes of various type (like terminals, browser, mailer
etc.) served by the "Linux" server, that is the IRIS server that handles all processes that
are not explicitly served by a dedicated server.

The bandwidth allocated to this server is 33% (budget 10 ms and period 30 ms). We run
30 processes, consisting in a X terminal executing the program "top" with the highest
refresh frequency (100 Hz), with allocated 2% of total bandwidth to each process
(budget 20 ms and period 1 sec). Hence, the total system bandwidth allocated is about
93% (Linux 33% + 30*2%). After an accurate analysis we realize that the most time-
consuming functions are the stop() and dispatch() functions, that respectively schedule
and deschedule all the tasks served by a server. The main reason is that they have to run
a queue of all the tasks served by each server. This operation is O(n), so that the
execution time increase with the number of task served. It is important to notice that the
Linux scheduler (as of version 2.4.18) has the same problem, i.e. the complexity in the
worst case is O(n). The current version of Linux (2.6.x) changed the implementation of
the scheduler and has a constant time complexity O(1).

The same problem happens when the system have to handle a lot of servers.
The current implementation of the EDF can be improved, since it is well-known that it is
possible to implement an insertion in an EDF queue with a complexity of O(log n).

Following is a table in which we show the overhead introduced by each hook (time are
expressed in nanoseconds) on a Athlon XP 1800+ Mhz with processor frequency of 1533
Mhz.

Average (ns) Minimum(ns) Maximum (ns)

unblock_hook
(activation) 4260 21 42547

block_hook

(deactivation) 5036 20 47497

fork_hook

(creation) 869 161 2285

cleanup_hook

(termination) 3647 314 45170

setsched_hook

(scheduling policy
selection) 79958 54312 99441

OCERA IST 35102 19

3 Feedback Scheduler

3.1 Motivation and background

The traditional way for using resource reservation scheduling is to reserve a fixed
fraction of the CPU bandwidth to each task, so that its temporal constraints can be
fulfilled.

However, a static allocation of resources is not a good idea if the task widely changes its
execution requirements throughout its execution. Indeed, we can allocate the CPU
bandwidth based on ``average'' requirements of the task; but this choice would result into
transient degradations of the provided QoS that might be annoying. On the other hand, a
bandwidth allocation based on worst case assumptions would most times be inefficient in
terms of CPU utilisation. Moreover, usually is not easy to estimate the bandwidth needed
as in the case of MPEG decoder. This problem can be addressed by dynamically
adapting the amount of resources reserved to each task (i.e. by using a feedback inside
the scheduling mechanism).

Feedback control techniques have been recently applied to real-time scheduling [Ek99]
[Nak98][Reg01][Lip98][cer02][Stan02] and multimedia systems [Ste99]. Owing to the
difficulties in modeling schedulers as dynamic systems, these works only provide a
limited mathematical analysis of the closed-loop performance, often based on
approximate models or intuitive arguments. The application of feedback to RB
algorithms was pioneered in [Abe99-3] introducing the concept of adaptive reservations.
This work opened up a new research thread. In [Abe02], it is shown how it is possible to
write an exact mathematical model for the dynamic evolution of a single reservation and
to design a switching Proportional Integer (PI) controller based on a linearisation of the
system. Stability results and synthesis techniques for tuning the parameters of the
switching PI controller, based on the theory of hybrid systems and on convex
optimisation were shown in [Pal03].

The problem was further investigated in [Pal03-2], where a nonlinear feedback control
scheme taking advantage of the specific structure of the system model was shown.

3.2 Novel contributions

We present here two novel contributions with respect to our previous work. First, we
introduce novel control techniques, which have been designed by attacking the problem
in the domain of stochastic control and stochastic dynamic programming.

In particular, we advocate a scheme where a dedicated controller is attached to each task.
At each step the controller tries to optimise or decide the expected values of certain
quantities of interest based on the expected behaviour of the computation times
stochastic process.

To this end, we propose an architecture in which a separate component, the predictor, is
responsible for providing the necessary information, based on its knowledge of the past
evolution of the system.

Then, we propose a software architecture for feedback control. The architecture has been
implemented in OCERA as part of this workpackage. Taking advantage of the Linux
dynamic loadable module mechanism, the structure of our architecture is layered and

OCERA IST 35102 20

modular in its turn. The resource reservation scheduler is available as a separate
component, while different control modules can be plugged in and out at the user's
convenience.

3.3 System model

We consider a set of independent tasks T 1 , ..., T n sharing a CPU. A task

T i consists of a stream of jobs, or instances, J k
i . Each job J k

i arrives

(becomes executable) at time r k
i , and finishes at time f k

i after executing for a

time ck
i . Job J k

i is associated a deadline d k
i , which is respected if

f k
id k

i , and is missed if f k
id k

i .

For our purposes, the sequences of computation times {ck
i}k∈N are considered as

discrete-time continuous valued stochastic processes.

For the sake of simplicity, we will restrict to periodic tasks}, in which
r k1
i =r k

iT i , where T i is the task period. Moreover, we will assume that

d k1
i =d k

iT i ; hence, r k1
i =d k

i .

For scheduling such tasks, we will use a resource reservation scheduler, namely the IRIS
scheduler presented in the previous chapter. A very important property ensured by
resource reservation scheduling is the so called temporal isolation, i.e. a task's
schedulability depends only on the behaviour of the task itself and on the assigned
budget Qi . Thanks to this property, the task can be thought of as running on a
virtual CPU having speed a fraction Bi  of the CPU speed. In fact, defining the

virtual finishing time vk
i as the time the k th job would finish if it were running on

a virtual CPU with speed Bi  , the enforcement of a hard reservation policy implies
the following relation [Lip00]:

vk
i− f k

i vk
i (1)

where =1−Bi Pi  . The above shows that in principle a resource reservation
scheduler can be made to approximate a ``fluid'' allocation of the processor as closely as
needed by choosing Pi  small enough. However, in practical implementations, the
overhead of context switches becomes relevant if Pi is too small.

A consistency relation necessary for a resource reservation scheduler to work properly is

∑
i

Bi U lub
(2)

with U lub1 depending on the algorithm used for the implementation.

Model of the scheduler
When considering soft real-time applications it is of paramount importance to quantify
the Quality of Service that each task experiences during his execution. In our model we
can tolerate occasional deadline misses as long as the anomaly is kept in check.

OCERA IST 35102 21

Therefore, it is reasonable to define a quality of service metric, that we will call
scheduling error, related to the deviation of the finishing time from the deadline. A
possible definition for such a metric could be ek

i = f k−1
i  −d k−1

i  /T i , where ek
i 

 is

the scheduling error experienced by job J k−1
i 

. An ideal bandwidth allocation would

be one for which ek
i =0 for all k . Indeed, both ek

i 0 and ek
i0 are

undesirable situations, since in the former the task does not respect its timing constraint,
whilst in the latter it receives an excess of bandwidth that would better be allocated to
other activities.

The introduction of a QoS metric exposes the limitations of resource reservation
scheduling per se. Consider Figure 3.2, where we show the evolution of the scheduling

OCERA IST 35102 22

(a)

(b)

(c)

Figure 3.2 Scheduling error for a static bandwidth scheduling of an MPEGplayer.

Figure 3.1Pictorial representation of the envisioned architecture: each task is controlled by a
dedicate controller while a supervisor enforces the utilization bound condition.

error for a multimedia task (MPEG decoding). Figure 3.2(a) reports the sequence of
computation times for decoding a fragment of a Rock Concert movie (courtesy of Philips
Research). The processor used for decoding is a Philips Nexperia trimedia and the
framerate is 25 frame/sec. Computation times fluctuate around a mean value that is
subject to sudden changes over time, due to the transitions from slow-moving scenes to
quicker ones, and vice versa. The two bottom rows report simulation data for a static
assignment of bandwidth. In the first experiment we chose a bandwidth equal to 1.3
times the mean of computation times divided by the task's period. The resulting
scheduling error is shown in Figure 3.2(b): while the average computed over the
sequence is acceptable there are long intervals of time when the scheduling error is large
thus degrading unacceptably the experienced Quality of Service. Figure 3.2 (c), instead,
shows what happens if the allocated bandwidth is calibrated on the worst case execution
time. The scheduling error is always negative, but it has a large absolute value, so it
results in a constantly large jitter value, meaning that the allocated bandwidth for the task
is most times in excess.

The considerations above clearly motivate the need for a dynamic adaptation of the
bandwidth a task is allocated during its execution, thus the idea of adaptive reservation.
In particular, in the line of research initiated in [Abe99-3], we perform bandwidth
adaptation using conceptual tools borrowed from feedback control theory. This concept
is henceforth referred to as feedback scheduling.

Dynamic model
In order to design a feedback control we need a mathematical model for the system
dynamic evolution. To this regard, the scheduling error as defined above, although an
appealing QoS metric, turns out to be cumbersome to use. Instead, we shall define a
different metric, by approximating the actual finishing time f k of each job with its

virtual finishing time, vk :

 k
i=

vk
i −d k

i 

T i . In view of (1), it is easy to show that  k
i 

constitutes an

approximation of the original metric ek
i  :

 k
i− 'ek

i  k
i  ' (3)

(where  '=

T
=1−Bi P

i 

T i ), which clearly shows that the introduced

approximation is acceptable provided that the ratio
Pi

T i  be small enough. The

dynamics of  k
i  is given by [Abe02]:

 k1
i =S  k

i
ck
i

T i Bk
i−1 (4)

where S  x =0 if x0 and S  x =x if x0 .

For most resource reservation algorithms,  k
i

 is exactly and easily measurable upon
the termination of each job.

OCERA IST 35102 23

Control goal
The above introduced concepts on resource reservation scheduling, and the model for the
task evolution, allow a formulation of the control goal. As we said earlier, ideally one
would wish to have the scheduling error always equal to zero. According to Equation
(4), this would entail choosing Bk

i =ci /T i  , which is evidently impossible without

a prior knowledge of {ck
i} . As a matter of fact, { k

i}k∈N are stochastic
processes and reasonable design goals for the QoS can be formulated on:

• the first order probability density distribution f  ki  . : it can be used to make a
qualitative comparison of two different control algorithms, by plotting the resulting
distributions on the same graph;

• the expected value of the s.e.   k
 i =E { k

i } and its variance
  k

 i 
2 =E { k

i −  k
 i 2} :these values can be used for a quantitative comparison of

two control techniques;

• the probability for the scheduling error  k
i to fall in a specified segment

[−ei , E i] of the real axis.

3.4 The feedback controller

Equation (4) describes a first order switching system, in which  k
i is a measurable

state variable that we want to control, the bandwidth bi acts as a command variable,

whereas ck
i is an exogenous disturbance term.

As a matter of fact, we have a collection of first order systems that evolve
asynchronously one another, their states being observed at asynchronous points in time
(jobs termination for the different tasks).

The asynchronicity of the system makes it difficult to design a global controller. A
simpler choice is a decentralised scheme where a dedicated controller decides the
bandwidth of each task looking at the evolution of the task itself in isolation. This idea is
not completely applicable since the bandwidths chosen by the different controllers
undergo a global constraint dictated by Equation (2). A minor departure from the
entirely decentralised scheme is to include a supervisor that, whenever the controllers
violate the constraint, resets the values of the bandwidths to fix the problem (e.g.
operating a weighted compression or a saturation). From the standpoint of each
controller, every time the supervisor is forced to act an impulsive disturbance is
experienced (see Figure 3.1). This functionality is located in the QOS Supervisor module
in Figure 1.1.

Single controller general design
The control scheme just introduced consists a collection of controllers attached to each
task and a supervisor that performs corrective actions only when a controller chooses a
value for the bandwidth in contrast with Equation (2) determining an overload condition.
The latter component is described in depth in [Abe02-Th] and we will omit further
details. Rather, this section is mainly concerned with the design of the dedicated
controllers. In order to reduce the probability of overload conditions, and the subsequent

OCERA IST 35102 24

supervisory corrections, each controller is constrained by a ``local'' saturation constraint:
bk
iBmax

i .

Even choosing the saturation values so that ∑
i

Bmax
i U lub , their presence allows one

to pose an upper bound on intensity of the disturbance term that can occur in presence of
a supervisor correction.

From now on, we will concentrate on how to design a controller for a single task and the
i superscript will be dropped for notational convenience. Clearly, the control

problem would be trivial if the computation time ck were known before beginning

the k th job.

To compensate for the lack of this knowledge, we propose a scheme based on two
components (see Figure 3.1) : 1) a predictor, upon the termination of J k−1 , supplies a

set of parameters I k related to a prediction of ck ; 2) a controller that decides the

bandwidth bk based on the set of parameters I k and on the measurements of
 k collected from the scheduler. The predictor plays in this scheme an important

role: the more accurate the prediction the better the resulting control performance.

The ability to build an accurate predictor is related to the stochastic properties of the
input process. A very simple predictor is one which is based on statistics (e.g. moving
average) gathered on the past computation times. Actually, we will show that the type of
information that the predictor needs to supply depends on the control scheme.

In the rest of the section we shall show three different control techniques:

1. invariant based control

2. stochastic dead beat control

3. cost optimal control

In this context, we will simply show the basic ideas and the structureof the controllers.

OCERA IST 35102 25

Figure 3.3Block diagram for QoS controller

Formal proofs on the closed loop stability and other properties can be found in [Pal03-2]
[Pal03b].

Following we present three feedback scheduling algorithms, then we will give some
implementation details.

Invariant based design
This control scheme has already been presented in [Pal03-2]. We report its description
here for the sake of completeness and to compare its performance to other control
schemes. The goal of an invariant based controller is to constrain the scheduling error
evolution within a small region [−e , E] , compensating for the fluctuations of ck .

The information I k provided at each step by the predictor is in this case a range
[hk , H k] where the next computation time ck is expected to fall. Assuming that
ck∈[hk , H k] (correct prediction) the controller is required to behave as follows:

• if k belongs to the set [−e , E] also  k1 has to belong to the same set
(invariance mode)

• if  k is outside of [−e , E] it will be steered back into [−e , E] in a
predetermined number of steps (recovery mode)

Whenever the computation time deviates from the predicted range, it is possible that the
scheduling error exits the invariant region, thus the recovery control mode is used to
steer it back into the region.

A theoretical discussion on conditions for such a controller to exist as well as on the
problem of mistaken predictions (i.e. ck∉[hk , H k]) can be found in the cited paper.
In this context we just summarise results on how to choose the bandwidth:

[step k)] choose bk

∈[H k

T 1E−S  k 
,
hk

T 1−e−S  k ] if  k 1

∈[H k

T 1E−S  k 
, Bmax] if  1 k2

=Bmax if  k 2

(5)

where  1=1−e−
hk

T Bmax

 and  2=1E−
H k

T Bmax

.

[step 0)] choose b0 in the same range as for a negative scheduling error.

The control formula just showed embeds the simplest recovery policy, which assigns the
maximum available bandwidth in such situations. Though, alternative policies are also
possible, aiming at achieving a proper trade-off between the speed of the recovery and
the expense in terms of used bandwidth. For example, it is possible to force an
exponential reduction of the gap between the scheduling error value and the invariance
region. This is discussed further in [Pal03b].

OCERA IST 35102 26

Stochastic dead beat approach
This control scheme attacks the design problem in the stochastic domain. The goal is to
choose a bandwidth such that the expectation of the next scheduling error be equal to a
desired value. The expectation that we are considering is conditioned to the past
evolution of the system. If the desired value is zero we refer to the controller as
Stochastic Dead Beat (SDB). It is possible to prove that the control law having such a
property, and satisfying the saturation constraint, can be expressed as follows:

bk={ C k

T 1−s  k 
if  k1−

 C k

Bmax

Bmax if  k1−
 C k

Bmax

} (6)

If  k1−
 C k

TBmax

, then it is not possible to guarantee that the expected next error be

zero. For this control scheme the information I k required from the predictor is
 C k

, i.e. the expectation of ck conditioned to the past evolution of the system.
This can be done, for example, with a moving average performed on last execution
times. Despite its simplicity, this technique is able to achieve a very good performance,
as we will show in Section~\ref{sec:experiments}.

Optimal cost approaches
This technique is also based on the framework of stochastic control. In particular, taking
inspiration from dynamic programming techniques [Ros83], the controller chooses the
value for the bandwidth Bk so as to optimise the expectation w  , b
(conditioned to the past evolution of the system) of a cost function $ w  , . , b . Such
a function expresses, at step k , the cost to pay if we choose the bandwidth value

bk=b , if the achieved next system state is  k1= .

In particular we chose a cost function accounting for the deviation of the next scheduling
error from zero, and the bandwidth being used:

w  k1 , b=  k1
2 1− b , where  ∈0,1 allows us to assign different

weights to the scheduling error or to the used bandwidth.

In case  k=1 , the minimum is immediately found as

bk=[3]2 
1−

 2 2

In the other cases the following formula holds:

OCERA IST 35102 27

bk  k  = s qrt [3]  k [3]−  k 

 =
  2 2
1− 

   =  
1− 

2

 2 2 2 2
3
  [1−S  k ]

1− 
3

This formula can be directly used for all  k '=1
3

2 C
[3] 

1−
 2 2 ,

which is the range for which   k is real. For  k ' , the formula still holds if
computations are properly performed in the complex domain. Furthermore, note that the
optimum bandwidth value found with this formula is subject to the usual saturation
constraint due to Bmax . As for the case of SDB, we used  for the expectation of

ck , while  denotes its standard deviation. Both quantities are conditioned to the
past evolution of the system and are the required output of the predictor for this control
scheme.

Figure 3.4 reports the optimal B  k  function for a particular set of parameters. The
same figure makes also a comparison with the bandwidth function in Equation (6).

An important problem with this approach is that the computation of the bandwidth
requires several floating point operations for which it is not immediate to achieve an
efficient kernel implementation. For fixed  and  the problem is relatively
simpler in that it is possible to do efficient linear interpolations of the curve. For
dynamically changing parameters, more sophisticated techniques are required and they
are currently under investigation.

OCERA IST 35102 28

Figure 3.4 Optimal B(.) function for the optimal cost approach compared with SDB.

Minimum expected square scheduling error

A special case for the technique shown above is when =1 . In this case, the
controller minimises, at each step, the expectation of the squared value of the next
scheduling error, subject to the saturation constraint. The optimisation problem yields,
in this case, a simpler formula: control law:

B  k ={  2 2

 [1−S  ]
if ,1−

 2 2

 Bmax

Bmax if  k1−
 2 2

 Bmax

} (7)

Note that this solution is only valid if Bmax
 2 2


=

 2


.

If such relation does not hold, the optimal control reduces to the trivial law always
returning Bmax .

The optimal bandwidth assignment that we got is is equal to the one given by the SDB
formula (6), plus a factor that is proportional to the input process variance  2 .

Perfect equivalence with SDB is there only in the limit for  0 . This is

reasonable: since here we want to minimise the squared value of  k rather than its

expectation, we have to take into account the standard deviation  using larger
bandwidth valued to compensate for it.

3.5 Implementation of the QoS manager

In general, different applications may need different controller strategies. Each module
will manage all tasks with the same characteristics, that need to be served by the same
control algorithm. A task can choose the QoS manager for its execution by specifying, in
the sched_setscheduler() call, the SCHED_QMGR1, SCHED_QMGR2, etc ...
scheduling policy, and by providing proper parameters to the module through the
sched_param structure.

OCERA IST 35102 29

int main()
{

// initialization
 sched_param param;
 // init controller parameters
 sched_setscheduler(mypid, SCHED_QMGR1, ¶m);

while (1) {
 //main loop code
 qmgr_end_cycle();
 qmgr_wait_period();

}
}

Figure 3.5 Typical structure of a cyclic task.

A task using adaptive reservations must be linked against the qos library, that provides
some commodity function implementing the user-level part of the feedback strategy.
Recall that only periodic tasks are considered. As a result, a task attached to an adaptive
reservation will have the structure shown in Figure 3.5 (the sequence of invocations is
shown in Figure 3.6 as a sequence diagram).

At the beginning, the task must perform an initialization phase in which the
setsched_hook of the QMGR1 module is invoked. After storing the controller parameters
in its internal data structures, the QMGR1 module invokes the qspv_request _create()
function of the QSPV module to initialize the reservation budget and period.

After initialization, the task enters a loop. Each execution of the loop corresponds to a
job of the task. For example, in case of a MPEG decoder, a job may correspond to the
decoding of one frame. At the end of the loop, the task signals the QMGR the
termination of the job by invoking the qmgr_end_cycle() function provided by the
qoslib.

The qoslib will then call the proper QMGR1 handler, which, in turn, calls the
qres_get_consumed() function of the QRES module to obtain the amount of budget
consumed by the job.

Then, the control law is applied and a new budget is computed and set with the
qspv_change _budget() function of the QSPV module. If there is not enough free
bandwidth to accommodate for the new budget, the QoS supervisor can implement three
possible behaviours, similar to the ones described in the previous section: saturation,
compression, or reject. In case the saturation policy is selected, the highest possible
budget is assigned to the task so that the total CPU utilization does not exceed U lub .

OCERA IST 35102 30

Figure 3.6Sequence diagram that shows the interaction between the QMGR the
QSPV and the QRES modules.

In case the compression policy is selected, all the reservations are recomputed
(``compressed'') so that we can make enough space for the new request (see [Abe99-3],
[Abe02-Th]). In case the reject policy is specified, the bandwidth adaptation fails (i.e.,
the budget is not changed). In any case, the qspv_change_budget() returns the actual
value of the budget that has been set.

Finally, the task blocks waiting for the next periodic event by calling the wait_period()}
function provided by qoslib. The periodic behaviour of the task is application dependent.
In other words, it is the responsibility of the application to set up a periodic timer event
and to block waiting for the event (although the qoslib provides some helper functions
for setting up periodic tasks).

3.6 Experimental results

In this section we report experimental results gathered on a real Linux system. The
considered application is a MPEG decoder. While the OS infrastructure described above
is at advanced testing stage, the adaptation of a MPEG player (namely, the xine player)
is still under way. Therefore, we emulated the behaviour of the decoder by a task that
periodically reads a trace file and, for each job, consumes a time equal to the one read
from the file (by a time consuming loop). The trace file has been provided by Philips
Research labs and refers to the same movie the segment in next figure is taken from.

In the first set of experiment, we wanted to gauge the benefit of the feedback scheduling
mechanism. In the second set of experiments we compared the performance of different
controllers. Finally, in the third set of experiments, we evaluated the influence of the
predictor component.

Benefits of feedback
Consider again the MPEG decoding times shown in Figure 3.2. Figure 3.7 shows the
scheduling error evolution that is achieved when the bandwidth is allocated by an
invariant-based QoS controller, for the same input sequence. The predictor, in this case,
produces at each step an interval [hk , H k] based on moving averages of the last ten

samples. In particular hk= k− k $ and H k= k k where  k is the

moving average and  k is the moving variance. The invariant region [−e , E]
was fixed apriori and the controller law is chosen in mid-point of the admissible range
(Equation (5)).

The only significant deviation from the target set (around the 790th sample) is due to a
swift scene change, which messes up the moving average predictor, but is a transient
problem soon recovered. A visual comparison between Figures 3.2 and 3.7 is illustrative
of the extent of the achieved performance enhancement.

OCERA IST 35102 31

OCERA IST 35102 32

Figure 3.7Scheduling error evolution resulting from the application of an invariant
based QoS controller to the input sequence of Figure 3.2(a)
Figure 3.8Comparison of the performance achieved by traditional PI-based, invariant-
based and stochastic dead beat controllers, while playing an MPEG movie

Figure 3.9Comparison of the performance achieved by traditional PI-based, invariant-
based and stochastic dead beat controllers, when multiple averages are used in last two
types of control.

Figure 3.10 Job execution times for an MPEG Movie with fixed frame types pattern
IBBPBBPBBPBB.

Figure 3.11Scheduling error PDF obtained with a single moving average vs. 3 and 12
multiple moving averages.

Comparing PI with invariant-based
For the purpose of evaluating the performance achieved by our approach, it is useful to
make comparisons with alternative approaches. A feedback controller that has been
studied in the past is a classic linear PI controller, like the one introduced in [PalAbe]. In
that approach, the authors used a controller assigning the bandwidth at each step
depending on the value of the scheduling error at the current and previous steps (linear
action), and on the bandwidth value assigned at the previous step (integral action).
Statistics have been gathered by a run of that controller, and a run of the invariant-based
controller as introduced in this work, with exactly the same trace of decoding times from
an MPEG2 movie. Obtained scheduling error PMFs are shown in Figure 3.8. The figure
highlights that an invariant based control achieves a PMF very similar to the one
achieved by a stochastic dead beat control. Both of them manage to keep the scheduling
error within a region near the origin, in a tighter manner with respect to what has been
achieved by using a PI based control. The parameters of the controllers have been chosen
so to perform a comparison at similar achieved mean values for the scheduling error, and
a single moving average has been used in order to estimate the input process statistics.
Clearly, by using multiple moving averages, the approaches introduced in this paper
achieve a much tighter scheduling error distribution, around the origin, as shown in
Figure 3.9.

Predicting computation times
The approach to QoS control in scheduling of soft real-time tasks proposed so far is
based on the knowledge of a quite small interval [cm k  , cM k ] in which the next
job execution time is supposed to reside with a high probability (in the probabilistic
bound model). The way such a prediction can be performed is highly application-
dependent. In this paragraph, a brief example shows how the proper choice of a predictor
for job execution times can dramatically improve performance of the QoS controller
relative to an MPEG decoder. A common class of MPEG movies has a periodic structure
in the frame types, i.e. there exist a fixed sequence of frame types that repeats over and
over during the movie (a common example is IBBPBBPBBPBBIBBP...). Decoding
times for various frame types are typically different, so that, looking closely at the job
execution times, it is possible to notice a periodic structure repeating all over the movie
(see Fig. 3.10). In such a case, a simple moving average (plus a moving standard
deviation) among job execution times completely fails in helping predicting the position
of the next sample, because the periodic load peaks corresponding to frames of type 'I'
cannot be predicted. Instead, it is much better to consider a different moving average for
each different class of load level. Figure 3.11 highlights the performance improvement
achieved with an approach of this kind. In fact, the scheduling error PDF is much more
narrow, resulting in a much more effective task control. The figure shows results
obtained with a variable number of moving averages, each one operating every 3 and 12
execution time samples.

OCERA IST 35102 33

Bibliography
Abe02: Luca Abeni and Luigi Palopoli and Giuseppe Lipari and Jonathan

Walpol, Analysis of a Reservation-Based Feedback Scheduler,Proc. of the
Real-Time Systems Symposium, 2002

Abe02-Th: Luca Abeni, Supporting time-sensitive Activities in a Desktop
Environment,, 2002

Abe98: Luca Abeni and Giorgio Buttazzo, Integrating Multimedia Applications
in Hard Real-Time Systems,Proceeding of the 19th Real-Time Systems
Symposium, 1998

Abe99: Luca Abeni and Giorgio Buttazzo, Constant Bandwidth vs. Proportional
Share Resource Allocation,Proceedings of the IEEE International
Conference on Mutimedia Computing and Systems, 1999

Abe99-3: Luca Abeni and Giorgio Buttazzo, Adaptive Bandwidth Reservation for
Multimedia Computing,Proceedings of the IEEE Real Time Computing
System, 1999

cer02: Cervin, Anton and Eker, Johan and Bernhardsson, Bo and AA'en, Karl-
Erik, Feedback-Feedforward Scheduling of Control Tasks, , 2002

Ek99: Johan Eker, Flexible Embedded Control Systems: Design and
Implementation,, 1999

Lip00: G.Lipari and S.K. Baruah, Greedy reclaimation of unused bandwidth in
constant bandwidth servers,IEEE Proceedings of the 12th Euromicro
Conference, 2000

Lip98: GiuSeptemberpe Lipari and Giorgio Buttazzo and Luca Abeni, A
Bandwidth Reservation Algorithm for Multi-Application Systems,IEEE
Real Time Computing Systems and Applications, 1998

mar04: L.Marzario, G. Lipari, P. Balbastre, A. Crespo, IRIS: A new reclaiming
algorithm for server-based real-time systems,10th IEEE Real-Time and
Embedded Technology and Ap, 2004

Nak98: Tatsuo Nakajima, Resource Reservation for Adaptive QOS Mapping in
Real-Time Mach,Sixth International Workshop on Parallel and Distr, 1998

Pal03: L. Palopoli and L. Abeni and G. Lipari, On the application of hybrid
control to CPU Reservations,Hybrid systems Computation and Control
(HSCC03), 2003

Pal03-2: Luigi Palopoli and Tommaso Cucinotta and Antonio Bicchi, Quality of
service control in soft real-time applications,Proc. of the IEEE 2003
conference on Vision, December 2003

Pal03b: Luigi Palopoli and Tommaso Cucinotta, QoS control in reservation-based
scheduling,, 2003

Raj97: R. Rajkumar, K. Juvva, A. Molano and S. Oikawa, Resource Kernels: a
resource centric approach to real-time and multimedia,Real-Time
Computing Systems and Applications, 1997

OCERA IST 35102 34

Reg01: John Regehr and John A. Stankovic, Augmented CPU Reservations:
Towards Predictable Execution on General-Pur,Proceedings of the IEEE
Real-Time Technology and A, 2001

Ros83: S.M. Ross, Introduction to stochastic dynamic programming,, 1983

Stan02: C. Lu, J. Stankovic, G. Tao and S. Son, Feedback Control Real-Time
Scheduling: Framework, Modeling and Algorithms, , 2002

Ste99: David Steere and Ashvin Goel and Joshua Gruenberg and Dylan
McNamee and Cal, A Feedback-driven Proportion Allocator for Real-Rate
Scheduling,Proceedings of the Third usenix-osdi, 1999

OCERA IST 35102 35

