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1 Introduction 
In the last phase of Workpackage 4, we have refined the implementation of some QoS
components and in particular:

• a  new  resource  reservation  algorithm,  called  IRIS,  that  improves  over  the  CBS
algorithm. It will be described in Chapter 2.

• a new module called QoS Supervisor that performs an admission control. In this way
we separated the issue of admission control from the problem of scheduling, so that
we can implement different admission control policies. Again, this is described in
Chapter 2.

• A  set  of  new  feedback  scheduling policies.  They  improve  the  behavior  of  the
algorithms presented in Deliverable 4.2, and they are described in Chapter 3. 

Other components, like the QoS library and the QoS monitor have not been modified
since last version. In the following section, we summarize the architecture of the new
QoS management modules in the OCERA kernel.  

1.1Structure of the new QoS components

The architecture of the QoS components is shown in Figure  1.1 . All components are
provided  as  dynamic  loadable  modules  except  the  QMGR  modules  which  can  be
provided as libraries or as modules. 

The QSPV module is the  QoS Supervisor that provides the admission control policy,
whereas  a  set  of  QoS management  modules  implement  the  QoS control  techniques
described above. 

This orthogonal separation among the different components is very useful because it
permits  to  change ``on-the-fly''  the  behaviour of  any of  the components  and try out
different feedback control  architectures.  In particular,  the CPU allocation  mechanism
(the resource reservation scheduler) is separated from the policy implemented by the
QoS modules.  Moreover, both the scheduler and the controller are not embedded in the
operating  system  and  they  can  be  dynamically  changed  at  run-time  by  simply
inserting/removing kernel modules. Finally, it is possible to have at the same time two or
more control  algorithms running into the same system, each one serving a group of
different tasks.
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Scheduling module
The QRES module provides resource reservation scheduling. The resource reservation
algorithm can be one between the CBS [Abe98], the GRUB [Lip00] or the IRIS [mar04].
The  first  two  algorithm  have  been  described  in  Deliverable  4.2,  whereas  the  IRIS
algorithm will be described in Chapter 2. It is possible to configure the QRES module to
implement one of the above algorithm at compile time. 

QoS Supervisor module

When a task is activated in the system requiring a certain bandwidth U i , an admission
test  must  be performed.  The QoS supervisor module implements different  admission
policies depending on the user needs. 

The QoS Manager module
We provide different QoS management modules (denoted with  QMGR1 and  QMGR2
in figure  1.1) that can coexist in the same system. Each module provides a different
controller strategy and can serve more than one task. For a description of the possible
controller strategies, please see Chapter 3.

OCERA  IST 35102 2

Figure  1.1 Architecture of QoS components



2 The IRIS algorithm
During the first phase of the project, we developed two schedulers (CBS [Abe98] and
GRUB  [Lip00]),  a  resource  manager  (the  feedback  scheduler),  a  user  library  and
monitoring tools. The two schedulers are able to provide temporal isolation and real-time
guarantees to soft real-time tasks as well as to legacy Linux processes. In addition, the
GRUB scheduler is able to reclaim unused bandwidth. The reclaimed bandwidth can be
used to give more bandwidth to processes that need to execute more and to save energy
by reducing the frequency of the processor. 

However, both schedulers suffer some problem in certain situation. When using these
schedulers to execute a non-periodic legacy Linux application a particular problem that
we call deadline aging can happen. The problem has been described in Deliverable 4.3.
We also proposed a possible solution, by sketching the IRIS algorithm, a new bandwidth
reservation  algorithm that  has  been  designed  to  purposely  solve  the  deadline  aging
problem.  In this chapter we present the complete description of the IRIS algorithm.

2.1 Description of the problem

The problem under investigation was presented in deliverable D4.3. In this section we
summarize the problem for completeness of the report. 

The Constant Bandwidth Server presents some problems when serving a non-periodic
process that consist of one single instance that runs indefinitely. For example, in Figure
2.1 we show the schedule generated by the CBS when serving two non periodic tasks
1  and 2 . Task 2  arrives in the system after some time, when the deadline

of the first server is already far away. As a consequence, task  1 cannot execute for a
while. We refer to this problem as the deadline aging problem.

The previous behavior is not desirable for many reason. In fact, the main goal of any
resource reservation algorithm is to provide each process Q units of budget every interval
of time P. 

This problem is partially solved by the GRUB algorithm. Consider again the previous
example. In Figure 2.2 we show the schedule produced by the GRUB algorithm.
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Algorithm GRUB maintains a variable U that keeps track of the total bandwidth used
by the active processes. It uses this information to reclaim unused bandwith and give it
entirely  to  the  executing  task  (GRUB  stands  for  greedy  reclamation  of  unused
bandwidth). Therefore, in interval [0,7] when the first process is the only active process,
there is not unnecessary postponing of the server deadline. For this reason, when the
second process arrives, the deadline of the first server is not too far and the deadline
aging problem does not happen.

However, GRUB suffers from another undesirable problem that is in some way related to
the previous one. Consider The following example.

Example  2. Consider  a  system  scheduled  by  the  GRUB  algorithm  consisting  of  a
process that is always active and is served by a server with budget Q1=1  and period
P1=4 . Another process is a periodic process with period T 2=16  that is served

by a CBS with budget Q2=12  and P2=16 . The resulting schedule is shown in
Figure 2.3.

As you can see, the first process is not scheduled as we expect. In particular, it executes
as it were served by a server with budget Q '=4  and period P '=16 . Notice also
that  this behavior  depends by the parameters of the other servers in the system. For
example, if the second server had a period of  P=20 ,  the first process would be
scheduled as it were served by a server with budget Q '=5  and P '=20 .

It is quite clear that the problem is caused by the fact that when the budget is exhausted
the  process  is  not  suspended,  but  is  inserted  again  in  the  ready  queue  with  a  new
deadline. 

We can solve this problem by introducing the concept of  hard reservation. It was first
introduced by Rajkumar [Raj97]. In a hard reservation, when the budget is exhausted, the
process is suspended until the recharging time. In the case of CBS, a hard reservation can
easily be implemented by suspending the process until the server deadline. We could do
this by adding the following rule to the CBS:

Hard Reservation Rule:  when the current budget  q  of the server is 0, the task is
suspended until the current server deadline d . When the time is equal to the server
deadline, the budget is recharged to q=Q , and the deadline is set to d=dP .
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Figure 2.2: Same example scheduled by GRUB.

Figure 2.3: Problem with GRUB.



As an example,  we apply the previous rule to Example 2.  The resulting schedule is
shown in Figure 2.4.

As you can see, the problem is now solved because we  forced the first process to be
executed inside its period. 

However, even after introducing the Hard Reservation rule, there is still a small problem
that needs to be addressed. It can happen that, in certain cases, the system becomes idle
even if there is some process that needs to be executed. In fact, it can happen that some
process finishes before we expect, while all other processes are suspended waiting for
the recharging time. 

Example  3. Consider  again  the system of  Example  2,  and  suppose  that  the  second
process need to execute only 9.1 units of time. The resulting schedule is shown in Figure
2.5 .

Although the first process is always active, at time t=13.1 the system becomes idle.
The first  process is  waiting for  recharging while the second process has finished its
instance. It is not easy to understand what to do. One possibility would be to recharge the
budget of process 1 immediately. However, this solution can work in this example, but it
is much more difficult to understand what to do when we have many processes in the
system.  

The CBS and GRUB algorithms were not designed for providing hard reservations and
the previous case cannot be handled easily. This last problem is quite important in soft
real-time system,  where  one  of  the  main goals  is  to  optimise  the  system resources.
Therefore, we should use work-conserving algorithms. 

Next, we describe a new scheduling algorithm, based on CBS, that solves all the three
problems described in this section.

2.2 The IRIS algorithm

IRIS (Idle-time Reclaiming Improved Server) is a new scheduling algorithm that allows
the  coexistence  of  hard,  soft  and  non  real-time  tasks.  The  proposed  algorithm  is
specifically designed to handle computational overload. A task that needs more CPU-

OCERA  IST 35102 5

Figure 2.4: Schedule of Example 2 with Hard Reservations.

Figure 2.5: Hard reservartions make the algorithm non-work-conserving.



time than reserved can re-use the spare bandwidth, without interfering with the others
tasks. With respect to other reclamation schemes, the novelty of the proposed algorithm
is  that  the  spare  bandwidth  is  fairly  distributed  among  the  needing  servers.  The
effectiveness of the algorithm is demonstrated with an extensive set of experiments. We
also propose a methodology to set scheduling parameters depending on the type of the
task and on the time constraints needed. 

System model
In this research, we consider two types of tasks in the system: cyclic tasks and non--
cyclic tasks. A  cyclic task i  consists of a  main loop.  At the end of every loop
instance the task blocks waiting for some event. Each execution between two blockings
is called job J i , k . We indicate with C i  the worst-case execution time (WCET) of

i .  Cyclic tasks can be divided into  periodic tasks that wait for a periodic timer

event with period  T i ;  sporadic tasks that wait for external events with a minimum

inter-arrival time, also called T i ; aperiodic tasks that wait for external events with an

unbounded inter-arrival time. Each job J i , k  of a cyclic task i  has associated an

arrival  time  ai , k  and  a  deadline d i , k .   We  denote  with  U i
=C i /T i  the

utilization factor of  task  i .  Moreover, cyclic tasks can also be divided into two
classes, depending on their criticality: hard real-time and soft real-time. For the hard real-
time tasks, it must be guaranteed that every job completes before its deadline. Soft real-
time task are less critical: deadline miss could result in a performance degradation but
not in a critical fault.  We assume that the relative deadline of cyclic tasks is equal to

T i .

Acyclic tasks model batch activities that are continuously active for large intervals of
time, like for example the process of compiling a program, or a long scientific simulation
or  calculation,  or  a  control  tasks  polling  an  external  sensor.  Usually,  they  are  not
associated any temporal constraint. However, in some case it may be desirable to execute
them at a certain minimum rate. Therefore, the aim is to assign them a minimum fraction
of the processor bandwidth. 

A server is an abstract entity used by the scheduler to reserve a fraction of CPU-time to
a task.  Each server  S i  is characterized by the following parameters:  Pi  is the

period of the reservation and it characterizes the granularity of reservation; Qi  is the

reserved execution time per period;  U i  is the fraction of reserved CPU-time, also

called  utilization  factor,  and  it  is  defined  as  U i=
Qi

Pi

.  In  addition,  each  server

maintains its own internal variables that are updated by the scheduler depending on the
server rules. One of these variables is the server priority.

The servers are inserted in the priority queue of the scheduler. When a server is selected
by the scheduler because it has the highest priority, the corresponding task is executed.
While a  task is  executing,  the budget  of  the server  is  decremented accordingly.  We
denote by qi  the current budget of server S i . When the budget get exhausted, the

task is stopped until the budget is replenished. We denote with r i , k  the time at which
the budget is replenished.  In this paper we consider only dynamic server: each server
has a dynamic deadline d i  that is used by the scheduler to order tasks in the priority
queue,  accordingly  with  EDF  algorithm  .  Different  server  algorithms  use  different
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policies for updating qi  and d i .

The goal of our research is to design an algorithm that guarantees a minimum fraction of
CPU time to each task (both cyclic and acyclic) in every interval of time of a given
length. This will allow to independently analyze the temporal behavior of each task and
to guarantee hard real-time tasks.

Description of the IRIS algorithm 
In this section we describe IRIS. 

• Every server can have four states (as shown in Figure 2.6): 

a) Inactive, i.e. the server has no pending job and it does not contribute to the total
bandwidth of the system

b) ActiveContending,,  i.e.  the  server  has  pending  jobs  and its  current  budget  is
greater than 0.

c) ActiveNonContending, i.e. the server has no pending jobs but its bandwidth still
contributes to the total system bandwidth.

d) Recharging, i.e. the server has a pending job but its current budget is 0 and it has
to wait to be recharged

• The system maintains 

a) a ready queue, where all ActiveContending servers are ordered by deadline

b) a recharging queue, where all Recharging servers are ordered by recharging time

c) a  suspended  queue,  where  all  ActiveNonContending  servers  are  ordered  by
inactive time. 

OCERA  IST 35102 7
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d) a total system bandwidth U t   that is the sum of the bandwidths of all the
servers that are not in the Inactive state.

The state diagram for the algorithm is shown in Figure  2.6 The servers change state
according to the following rules:

1. Initially all servers are in the Inactive state

2. If a job arrives at time t

a) If the server is Inactive, then q=Q  and d=tP

b) if the server is ActiveContending or Recharging, the arrival is buffered and will be
served later

c) if  the  server  is  ActiveNonContending,  it  becomes  active  contending  and  it  is
inserted again in the ready queue with the same current budget and deadline

3. When the server executes for  , q=q−

4. If the server is ActiveContending and  q=0 , the server reaches the Recharging
state and the recharging time is set to r=d .

5. If  the  server  is  in  the  Recharging  state  and t=r ,  then  the  server  become
ActiveContending and q=Q and d=dP .

6. When the job finishes

a) If there is another pending job, the server remains in the ActiveContending state.

b) If there are no pending jobs and td−q Q
P

, the server becomes inactive

c) otherwise, the server becomes ActiveNonContending and the inactive time is set

to i=d−q Q
P

.

7. If the server is ActiveNonContending and t=i , then the server becomes inactive.

8. If at time t no server is in ActiveContending state and there is at least one server in
Recharging state:

a) let j  be the first server in the recharging queue (i.e. The one with the smallest
recharging time), and let =r i−t  . For every server i in the recharging queue,
r i=r i− .

b) Every  server  i  in  the  recharging  queue  with  r i=t is  removed  from  the
recharging  queue  and inserted  in  the  ready  queue;  its  budget  is  recharged  to
q=Q and its deadline is set to d i=tPi . 

The way the algorithm works is better explained by an example.
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Example 1. Consider a system consisting of 3 tasks,   1 ,  2  and  3 .  Task
 1  is  always  active  and  is  assigned  a  server  with  budget  Q1=1 and  period
P1=4 . Task  2  is a periodic real time task with computation time C 2=1  and

period T 2=6 . It is assigned a server with Q2=2  and P2=6 . Task  3 is

always active and it is assigned a sever with Q3=2  and P3=9 .

The system is underutilised, because the sum of the bandwidths of all server is less than
1.  Moreover,  2  uses  less  bandwidth  than  expected  (only  1  unit  whereas  it  is
allocated 2), and we would like to reclaim this exceeding bandwidth to execute the other
two tasks.

The resulting schedule is shown in Figure 2.7. Each activation of a server is represented
with an upward arrow and the corresponding deadline is represented with a downward
arrow. The activation instant and the corresponding deadline are linked by an arc. For
example, task  3  is activated at time 0 with deadline at 9, at time 6 with deadline at
15 and at time 11 with deadline at 20.

Let's now analyse the schedule.

• At time 0 all tasks are ready, and task  1  is the one with the earliest deadline and
execute. At time 1, the budget is 0 and the server goes to the Recharging state. The
server is inserted in the recharging queue with recharging time r1=4 .

• Then tasks  2  is executed and finish its execution at time 2 without exhausting its
budget. It goes to the ActiveNonContending state, with inactive time at 3.

• Task  3 is executed and its budget goes to 0. Like task  1 , it is inserted in the

recharging queue with recharging time r3=9 . Meanwhile, task  2  is now in
the Inactive state.

• At  time  4,  the  recharging  time  for  task   1  is  come,  so  it  is  put  in  the
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ActiveContending state and its budget is recharged to q1=1  and its deadline is set
to d 1=8 . 

• Task  1  is selected to execute, and its budget become 0 again at time 5. It is then

put again in the Recharging with  r1=8 . Note that until now the schedule is the
same as with CBS. 

• At time 5, there is not other task in ActiveContending. Therefore, rule 8 is applied.
The  earliest  recharging  time  is  r1=8 .  Therefore,  all  recharging  times  are

decremented by =r1−t=3 , with the result that r1=5  and r3=6 . Now,

task   1 is put again in the ready queue with budget recharged to  q1=1  and

deadline set at d 1=9 .

• Since it is the only task in the ready queue,   1  executes and again exhaust its

budget and is put again in Recharging with r1=9

• At  time  6,  task   2 arrives  and  needs  to  be  executed  again  with  deadline
d 2=12 .  Moreover, task   3  recharging time is arrived and it  is put in the

ready queue with budget q3=2  and deadline d 3=15

The interested reader can go through the remaining of the schedule to check how the
algorithm works. A few things need to be highlighted. Since task  1  and  3  are
always  active  and  never  suspend  themselves,  they  spend  their  time  between  state
ActiveContending and Recharging. Task  2 is using less than expected, therefore it
goes through states  Inactive,  ActiveContending and ActiveNonContending.  Note that
there are no idle times, as expected, since there are two tasks that are always active. Note
also that each task executes at least Q units of budget every P. 

We also define a simplified version of IRIS, that we call IRIS-HR, for which the warping
rule (8) is not applied. The IRIS-HR is useful in those case in which we want an upper
bound on the amount of time assigned to one application, even in the case of spare
bandwidth left. 

Properties of the algorithm
The IRIS algorithm maintains the original CBS schedulability property. It is also a fair
algorithm in the sense that the spare time is equally distributed among the servers that
need to execute more than the reserved CPU time. The following Theorems are reported
here without a proof. The proof of these theorems can be found in [mar04].

Theorem 1 (Schedulability Property)

Given a set of periodic tasks with total utilization factor  U p=∑
i=1

N

Ui
 and a set of

IRIS servers with utilization factor U s=∑
i=1

N

U i  the whole set is schedulable by EDF

if and only if 

U pU s1 .
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Theorem 2 (Hard Schedulability)

A hard task i  with period T i  and WCET C i  is schedulable by an IRIS server

with parameters  QiC i  and  Pi=T i  if  and only if   i  is  schedulable with
EDF.

Theorem 3 (Minimal execution time guarantee)

Let  [ t1, t2]  be  an  interval  such  that  server  S i ,  serving  task   i ,  is  never

inactive. If t2−t12 Pi−Qi , then  i  executes at least  Qi  unit of time in the

interval [ t1, t2] . 

An interesting property of IRIS server is that it solves the deadline aging problem.

Theorem 4 (Deadline aging)

If d i  is the deadline associated to the server S i  at time t , we have that:

∀ i , t , d itPi

The IRIS algorithm distributes the spare time among the reclaiming servers in a fair way:
the spare time of the system is redistributed to the servers proportionally to the reserved
bandwidths. Since the allocation of CPU time is not fluid, we show the property only in
intervals large enough with respect to the periods of the servers. 

For simplicity we analyze the case in which the served tasks are always ready to execute.
We  denote  by  U i ' t1, t2 the  bandwidth  used  by  server  S i  in  the  interval
[ t1, t2] : 

U i ' t1, t2=
Qi ' t2−Qi ' t1

t2−t1

,

where Qi ' t   is the amount of budget used by server S i  until time t .

Theorem 5 (Fairness)

Consider two IRIS servers  S i , S j  serving tasks that are always ready to execute
(the servers are always in the state active or Re-charging). The following property holds:

∀ t1, t2 : t2−t12 Pmax

U i

U j

t2−t1−2 Pi
t2−t12 P j


U i ' t1, t2
U j ' t1, t2


U i

U j

t2−t12 Pi
t2−t1−2 P j

where Pmax=max Pi , P j .

How to assign IRIS parameters
All  the  properties  mentioned  in  the  previous  section  allow  us  to  use  a  bandwidth
reservation strategy to allocate a fraction of the CPU time to each task independently of
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the other tasks in the system. In particular, we can execute in the same system different
types  of  task,  cyclic  and  acyclic,  hard  and soft.  In  fact,  the  reserved  bandwidth,  if
available at  the initial  request,  is  always guaranteed.  This  guarantee is  based on the
reservation period and does not depend on the behavior of other servers.

In this section, we give some suggestions on how to assign the budget and the period to
the different tasks in the the system.

• Hard real-time tasks.  Hard real-time tasks can be scheduled directly by EDF or
through a dedicated IRIS server. If we are absolutely sure about their WCET, then we
can  schedule  them directly  under  EDF.  However,  if  for  some fault,  a  HRT task
executes more than its computed WCET, some other random task in the system may
miss its deadline. In the worst case, this could jeopardize the CPU. If we want to
avoid this interference, we can assign each hard real-time task an IRIS server, setting

P i  to the task's period T i  and Qi  greater than its estimated WCET. In this
way, the other tasks in the system are protected by possible misbehaviors. This is
useful especially in the developing and debugging phase.

• Soft real-time tasks. In the case of periodic soft real-time tasks, we can set Pi  to
the task's period. For aperiodic tasks, the server period should be set equal to the
average response time needed. To set Qi  we have more freedom: since setting it to
the WCET may waste the CPU utilization, we can set this parameter to some value
between the task's average execution time and its WCET. The trade off is between the
amount of reserved bandwidth and the number of deadline miss. Notice that, since
IRIS is able to reclaim the spare bandwidth, it may happen that, even by setting the
budget to a small value, the number of missed deadlines is low because of the extra
budget dynamically available due to the reclaiming mechanism.

• Non real-time tasks. These tasks do not have time constraints. However, in many
cases it could be desirable to execute them at a certain rate.  In this case a server could
be used to reserve a fraction of CPU time to each task.  Pi  must be set to the

granularity  of  reservation,  while  Qi  must  be  set  proportionally  to  the  needed
bandwidth. As an example, we can use a server to reserve a fraction of CPU time to
an interactive task like a shell to control or to monitor the system.

Experiments
In this section, we show the effectiveness of the IRIS algorithm. The goal is to highlight
two  important  characteristics  of  IRIS  against  CBS:  good  performance  in  overload
situations, and minimal temporal utilization guarantee. A massive number of tests have
been run using a synthetic workload model. In the following, we describe the simulations
settings and the obtained results.

The task sets for these experiments were generated with the following characteristics:

• Three hard real-time periodic tasks, generated with random C k  and  T k . The
bandwidth consumed by hard tasks is: 

U hard=∑
k=1

3 C k

P k

• Two soft tasks that serve sporadic jobs, whose inter-arrival and execution times are
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also randomly generated around the values Qi and Pi . A total of 300 jobs are
generated for each task. The soft load is:

U soft=∑
k=4

5 Qk

Pk

The variable measured is the average soft response time of sporadic tasks, when task sets
are scheduled under IRIS and CBS. Being rt i , j  the response time of the job J i , j ,
the average soft response time is defined as follows:

 avsrt i=∑
j=0

j=300 rt i , j

r i , j1−r i , j

In the first experiment, soft tasks consume 15% of the total utilization of the system (
U soft=0.15 ) while hard task parameters are specified with  U hard  ranging from

0.2 to 0.6.  We assume that the computation time of the jobs ( C i , j ) is similar to the

budget of the server assigned to the task ( Qi ). As it can be seen in Figure 2.8, average
soft response time is very similar in IRIS and CBS, although it is slightly lower in the
case of IRIS.

Experiment 2 has been generated with the same characteristics than Experiment 1, except
that an overload situation is forced. We can create an overloaded system if some jobs
have a C i , j  much greater than its budget (we call it ''heavy'' jobs). In the simulations,

every 10 activations  C i , j=6Qi . The results are shown in Figure  2.9. In this case,
IRIS performs much better than CBS, because CBS suffers from deadline aging, and
when a ''heavy'' job arrives, the budget is replenished several times and the deadline is
moved away. This way, the response time of the ''heavy'' job, and also the response time
of  future  jobs,  is  highly  increased.  However,  as  IRIS does not  replenish  the budget
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immediately, the jobs that arrive after the ''heavy'' one do not suffer the consequences of
the overload, maintaining a reasonable response time.

In Experiments 3 and 4, hard tasks consumes 35% of the total utilization of the system (
U hard=0.35 )  while  soft  tasks  parameters  Q and  P  are  generated  with
U soft ranging from 0.1 to 0.5. Experiment 3 simulates a normal execution (Figure

2.10) while Experiment 4 shows the results in an overload situation (Figure 2.11).
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In  both  experiments,  the  performance  of  IRIS  is  better  than  CBS,  with  a  great
improvement in the overloaded systems. 

The number of missed tasks' deadlines is also an important parameter that must be taken
into account. Figure 2.12 shows the percentage of missed deadlines with both algorithms
for the task sets generated in Experiment 4. The results show that the maximum deadline
misses of IRIS is less than 30%, being always greater in CBS.

Another interesting experiment  is to compare the utilization of soft tasks with IRIS and
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CBS. In the first experiment, the workload consists of 6 greedy tasks (  1,. .. , 6 ),

with Qi  and P i  randomly generated, except budget for  6  that is Q6=1 .
Task set parameters are generated to have different utilization (from 20 to 80%).

In this case, the variable measured is the distance between two consecutive executions of
task  6 . As this task has Q6=1 , we want to see if the required utilization of the
task  is  guaranteed  for  both  algorithms.  During  the  simulations,  the  number  of
occurrences of every value of the distance have been counted. The distance between two
consecutive executions has been normalized to the period P6 . Figure 2.13 shows the
results.

As it  can be seen, CBS executes with a great variability, and most of the times task
executions are very close. But, due to deadline aging, when the budget is exhausted, the
task scheduled under CBS can stay without executing for a long time. This is the reason
why under CBS, the time between two consecutive executions can be up to 440% of the
task period. However, a task scheduled under IRIS executes most of the times every
period,  or  less.  And the maximum interval  between two executions  is  only  190% (

2 P6−Q6 ). This property of IRIS is specially important in systems where reducing
jitter is a key issue, such in control systems.

The last  experiment consists of measuring the utilization of greedy tasks all over the
execution of the system, and see what happens to utilization when a new greedy task
arrives. The goal is to demonstrate that IRIS is more fair in distributing the idle time than
CBS. 

Experiments have been done in the following way: three acyclic tasks  1 ,  2  and
 3  have been generated with server periods ranging from 10 to 30. First activation of
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 1  and  2  is set to the initial instant (t=0), while first activation of  3  is set

to  instant  t=30.  The  variable  measured  is  
U 1 ' t1, t2

U 1

.  Similar  results  have  been

obtained with  
U 2 ' t1, t2

U 2

, but in Figure  2.14 are depicted results only for   1 .

Instants t1  and t2  have been chosen to measure utilization in windows that moves
over the total execution of the system. The size of the windows is the largest period the
three tasks. This means that, in Figure  2.14, point 1 in X coordinates means the first
window  ( t1=0 ,  t2=maxperiod ),  point  2  is  the  second  window  ( t1=1 ,

t2=maxperiod1 ), and so on.

Figure 2.14 shows that, in CBS, the utilization of  1  rapidly goes to 0 when  3

arrives  (t=30).  And  the  same happens  to   2 .  As  a  consequence,  CBS does  not
maintain the utilization required. However,  IRIS maintains the required utilization of
 1 , even when new tasks arrives, or even in overload situations.

2.3 Implementation in OCERA

QoS supervisor
As anticipated in  Chapter  1,  we decided to separate  the admission control  from the
scheduling algorithm. In this way, the user can customise the admission control policies
to the needs of the applications more easily. This customisation is especially useful when
introducing reservation with varying bandwidth, as in the case of feedback scheduling
(see Chapter 3 for further details).

When a new reservation is created specifying a certain budget Q and a certain period P,
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the system must check if there is enough free bandwidth to accommodate for the new
reservation. This admission control is performed by the QoS supervisor module (denote
with QSPV in Figure 1.1). This module intercepts all the calls to the scheduler_setsched
()  via  the setsched  hook  (see deliverable  D4.2 for  an  explanation of  the  scheduling
hooks). 

Three different flavors of this module exist, each one implementing a different admission
control  policy:  saturation,  compression and  reject.  They  differ  in  their  response  to
requests that cannot be accommodated. In all cases, if the sum of the CPU utilizations of
the existing reservations, plus the utilization of the new reservation, does not exceed the
maximum possible  utilization U lub ,  then  the  request  is  forwarded  to  the  setsched
handler of the QRES module; the  sched _setscheduler() succeeds and the task will be
scheduled according to the CBS algorithm with the specified parameters.

If there is not enough bandwidth to serve the new request, the action depends on the
selected policy:

• In case the saturation policy is selected, the highest possible  budget is assigned to the
task so that the total CPU utilization does not exceed U lub . The setsched handler
of the QRES module is called with the new budget. 

• In  case  the  compression  policy  is  selected,  all  the  reservations  are  recomputed
(``compressed'') so that we can make enough space for the new request. See [Abe99]
[Abe02] for a detailed description of the compression algorithm. For each existing
reservation,  the  setsched handler  of  the  QRES module  is  invoked with  the new
budget value.

• In case the reject policy is specified, the sched_setscheduler() returns with error and
the task is scheduled in background.

The QSPV module is also used by the QoS Manager to dynamically change the budget
of an existing reservation according to the feedback control algorithm.

Implementation of IRIS
The implementation of the IRIS algorithm is very similar to the implementation of the
CBS  algorithm,  described  in  Deliverable  D4.1.  The  scheduler  is  implemented  as  a
dynamically loadable module and requires that the “generic sheduler patch” is applied to
the Linux kernel. We do not report here the complete description of the implementation
and  remand  to  Deliverable  D4.1.  Here,  we  highlight  the  differences  between  the
implementation of the CBS and the implementation of the IRIS scheduler. 

In IRIS, a new queue has been defined, the Recharging queue. It is an ordered list of
server descriptors, which contains all servers that are in the Recharging state. The queue
is ordered by increasing recharging time. 

A system timer is programmed to the shortest between the following two events:

•  The recharging time of the first server in the Recharging queue, if any. When this
event  expires,  the first  server is  extracted from the Recharging queue,  its  current
budget and deadline are recomputed and the server is inserted in the Ready queue;

•  The budget exhaustion time of the executing server. When this event occurs, the
executing server is suspended and inserted in the Recharging queue. A new server is
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selected for execution from the Ready queue.

Overhead of the implementation 
In  order  to  measure  the  overhead  introduced by  the  qres  module  in  the  scheduling
process, we run a test that stress the scheduler, running several process simultaneously.
In particular we run about 50 processes of various type (like terminals, browser, mailer
etc.) served by the "Linux" server, that is the IRIS server that handles all processes that
are not explicitly served by a dedicated server. 

The bandwidth allocated to this server is 33% (budget 10 ms and  period 30 ms). We run
30 processes, consisting in a X terminal executing the program "top" with the highest
refresh  frequency  (100  Hz),  with  allocated  2%  of  total  bandwidth  to  each  process
(budget 20 ms and period 1 sec). Hence, the total system bandwidth allocated is about
93% (Linux 33% + 30*2%).  After an accurate analysis we realize that the most time-
consuming functions are the stop() and dispatch() functions, that respectively schedule
and deschedule all the tasks served by a server. The main reason is that they have to run
a  queue  of  all  the  tasks  served  by  each  server.  This  operation  is  O(n),  so  that  the
execution time increase with the number of task served. It is important to notice that the
Linux scheduler (as of version 2.4.18) has the same problem, i.e.  the complexity in the
worst case is O(n). The current version of Linux (2.6.x) changed the implementation of
the scheduler and has a constant time complexity O(1). 

The same problem happens when the system have to handle a lot of servers.
The current implementation of the EDF can be improved, since it is well-known that it is
possible to implement an insertion in an EDF queue with a complexity of O(log n).

Following is a table in which we show the overhead introduced by each hook (time are
expressed in nanoseconds) on a Athlon XP 1800+ Mhz with processor frequency of 1533
Mhz.

Average (ns) Minimum(ns) Maximum (ns)

unblock_hook
(activation) 4260 21 42547

block_hook

(deactivation) 5036 20 47497

fork_hook

(creation) 869 161 2285

cleanup_hook

(termination) 3647 314 45170

setsched_hook

(scheduling  policy
selection) 79958 54312 99441
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3 Feedback Scheduler 

3.1 Motivation and background

The traditional  way  for  using  resource  reservation  scheduling  is  to  reserve  a  fixed
fraction of  the  CPU bandwidth to each task,  so  that  its  temporal  constraints  can be
fulfilled. 

However, a static allocation of  resources is not a good idea if the task widely changes its
execution  requirements  throughout  its  execution.  Indeed,  we  can  allocate  the  CPU
bandwidth based on ``average'' requirements of the task; but this choice would result into
transient degradations of the provided QoS that might be annoying. On the other hand, a
bandwidth allocation based on worst case assumptions would most times be inefficient in
terms of CPU utilisation. Moreover, usually is not easy to estimate the bandwidth needed
as  in  the  case  of  MPEG decoder.  This  problem  can  be  addressed  by  dynamically
adapting the amount of resources reserved to each task (i.e. by using a feedback inside
the scheduling mechanism).

Feedback control techniques have been recently applied to real-time scheduling [Ek99]
[Nak98][Reg01][Lip98][cer02][Stan02] and multimedia systems [Ste99].  Owing to the
difficulties  in  modeling schedulers  as  dynamic  systems,  these  works  only  provide  a
limited  mathematical  analysis  of  the  closed-loop  performance,  often  based  on
approximate  models  or  intuitive  arguments.   The  application  of  feedback  to  RB
algorithms was pioneered in [Abe99-3] introducing the concept of adaptive reservations.
This work opened up a new research thread. In [Abe02], it is shown how it is possible to
write an exact mathematical model for the dynamic evolution of a single reservation and
to design a switching Proportional Integer (PI) controller based on a linearisation of the
system.   Stability  results  and  synthesis  techniques  for  tuning  the  parameters  of  the
switching  PI  controller,  based  on  the  theory  of  hybrid  systems  and  on  convex
optimisation were shown in [Pal03]. 

The problem was further investigated in  [Pal03-2], where a nonlinear feedback control
scheme taking advantage of the specific structure of the system model was shown.

3.2 Novel contributions

We present here two novel contributions with respect to our previous work. First, we
introduce novel control techniques, which have been designed by attacking the problem
in the domain of stochastic control and stochastic dynamic programming.

In particular, we advocate a scheme where a dedicated controller is attached to each task.
At each step the controller tries to optimise or decide the expected values of certain
quantities  of  interest  based  on  the  expected  behaviour  of  the  computation  times
stochastic process. 

To this end, we propose an architecture in which a separate component, the  predictor, is
responsible for providing the necessary information, based on its knowledge of the past
evolution of the system. 

Then, we propose a software architecture for feedback control. The architecture has been
implemented in OCERA as part of this workpackage. Taking advantage of the Linux
dynamic loadable module mechanism, the structure of our architecture is layered and
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modular  in  its  turn.  The  resource  reservation  scheduler  is  available  as  a  separate
component,  while  different  control  modules  can be plugged in and out at  the  user's
convenience.

3.3 System model

We consider  a  set  of  independent  tasks  T 1 ,  ...,  T n sharing a CPU.  A task

T i  consists  of  a  stream of  jobs,  or  instances,  J k
i .  Each  job  J k

i arrives

(becomes executable) at time r k
i , and finishes at time f k

i  after executing for a

time  ck
i .   Job  J k

i is  associated  a  deadline  d k
i ,  which  is  respected  if

f k
id k

i , and is missed if f k
id k

i .

For our  purposes,  the sequences of  computation times  {ck
i}k∈N  are considered as

discrete-time continuous valued stochastic processes.

For  the  sake  of  simplicity,  we  will  restrict  to  periodic tasks},  in  which
r k1
i =r k

iT i ,  where  T i  is  the  task period.  Moreover,  we will assume that

d k1
i =d k

iT i ; hence, r k1
i =d k

i .

For scheduling such tasks, we will use a resource reservation scheduler, namely the IRIS
scheduler  presented  in  the  previous  chapter.  A  very  important  property  ensured  by
resource  reservation  scheduling  is  the  so  called  temporal  isolation,  i.e.  a  task's
schedulability  depends  only  on the behaviour  of  the  task itself  and on the  assigned
budget  Qi .  Thanks to this property,  the task can be thought of as running on a
virtual CPU having speed a fraction  Bi   of the CPU speed. In fact,  defining the

virtual finishing time vk
i  as the time the k th  job would finish if it were running on

a virtual CPU with speed Bi  , the enforcement of a hard reservation policy implies
the following relation [Lip00]:

vk
i− f k

i vk
i (1)

where  =1−Bi Pi  .  The above shows that in principle a resource reservation
scheduler can be made to approximate a ``fluid'' allocation of the processor as closely as
needed by choosing  Pi   small enough. However, in practical implementations, the
overhead of context switches becomes relevant if Pi  is too small.

A consistency relation necessary for a resource reservation scheduler to work properly is

∑
i

Bi U lub
(2)

with U lub1 depending on the algorithm used for the implementation.

Model of the scheduler
When considering soft real-time applications it is of paramount importance to quantify
the Quality of Service that each task experiences during his execution. In our model we
can tolerate occasional deadline misses as long as the anomaly is kept in check.

OCERA  IST 35102 21



Therefore,  it  is  reasonable  to  define  a  quality  of  service  metric,  that  we  will  call
scheduling error, related to the deviation of  the finishing time from the deadline. A
possible definition for such a metric could be ek

i = f k−1
i  −d k−1

i  /T i , where ek
i 

 is

the scheduling error experienced by job J k−1
i 

.  An ideal bandwidth allocation would

be one for which  ek
i =0  for all  k .  Indeed, both  ek

i 0  and  ek
i0 are

undesirable situations, since in the former the task does not respect its timing constraint,
whilst in the latter it receives an excess of bandwidth that would better be allocated to
other activities.

The  introduction  of  a  QoS  metric  exposes  the  limitations  of  resource  reservation
scheduling per se. Consider Figure 3.2, where we show the evolution of the scheduling
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Figure  3.2 Scheduling error for a static bandwidth scheduling of an MPEGplayer.

Figure  3.1Pictorial representation of the envisioned architecture: each task is controlled by a
dedicate controller while a supervisor enforces the utilization bound condition.



error for a multimedia task (MPEG decoding). Figure  3.2(a) reports the sequence of
computation times for decoding a fragment of a Rock Concert movie (courtesy of Philips
Research).   The processor used for  decoding is  a  Philips  Nexperia  trimedia and the
framerate is 25 frame/sec.  Computation times fluctuate around a mean value that is
subject to sudden changes over time, due to the transitions from slow-moving scenes to
quicker ones, and vice versa.  The two bottom rows report simulation data for a static
assignment of bandwidth. In the first  experiment we chose a bandwidth equal to 1.3
times  the  mean  of  computation  times  divided  by  the  task's  period.  The  resulting
scheduling  error  is  shown  in  Figure  3.2(b):  while  the  average  computed  over  the
sequence is acceptable there are long intervals of time when the scheduling error is large
thus degrading unacceptably the experienced Quality of Service.  Figure 3.2 (c), instead,
shows what happens if the allocated bandwidth is calibrated on the worst case execution
time.  The scheduling error is always negative, but it has a large absolute value, so it
results in a constantly large jitter value, meaning that the allocated bandwidth for the task
is most times in excess.

The considerations above clearly motivate the need for  a  dynamic adaptation of  the
bandwidth a task is allocated during its execution, thus the idea of adaptive reservation.
In  particular,  in  the  line  of  research  initiated  in  [Abe99-3],  we  perform bandwidth
adaptation using conceptual tools borrowed from feedback control theory. This concept
is henceforth referred to as  feedback scheduling.

Dynamic model
In order  to design a feedback control we need a mathematical  model for the system
dynamic evolution.  To this regard, the scheduling error as defined above, although an
appealing QoS metric, turns out to be cumbersome to use.  Instead, we shall define a
different metric, by approximating the actual finishing time  f k of each job with its

virtual finishing time, vk :

 k
i=

vk
i −d k

i 

T i . In  view  of  (1),  it  is  easy  to  show  that   k
i 

constitutes  an

approximation of the original metric ek
i  :

 k
i− 'ek

i  k
i  ' (3)

(where   '=

T
=1−Bi P

i 

T i  ),  which  clearly  shows  that  the  introduced

approximation  is  acceptable  provided  that  the  ratio  
Pi

T i   be  small  enough.  The

dynamics of  k
i    is given by [Abe02]:

 k1
i =S  k

i
ck
i

T i Bk
i−1  (4)

where S  x =0  if x0  and S  x =x  if x0 . 

For most resource reservation algorithms,  k
i

 is exactly and easily measurable upon
the termination of each job. 
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Control goal
The above introduced concepts on resource reservation scheduling, and the model for the
task evolution, allow a formulation of the control goal. As we said earlier, ideally one
would wish to have the scheduling error always equal to zero.  According to Equation
(4), this would entail choosing Bk

i =ci /T i  , which is evidently impossible without

a  prior  knowledge  of  {ck
i} .   As  a  matter  of  fact,  { k

i}k∈N   are  stochastic
processes and reasonable design goals for the QoS can be formulated on:

•  the first order probability density distribution f  ki  . : it can be used to make a
qualitative comparison of two different control algorithms, by plotting the resulting
distributions on the same graph;

•  the  expected  value  of  the  s.e.    k
 i =E { k

i } and  its  variance
  k

 i 
2 =E { k

i −  k
 i 2} :these values can be used for a quantitative comparison of

two    control techniques;

•  the probability for  the scheduling error   k
i  to fall     in a  specified segment

[−ei , E i]  of the real axis.

3.4 The feedback controller

Equation (4) describes a first order switching system, in which  k
i  is a measurable

state variable that we want to control, the bandwidth bi  acts as a command variable,

whereas ck
i  is an exogenous disturbance term.

As  a  matter  of  fact,  we  have  a  collection  of  first  order  systems  that  evolve
asynchronously one another, their states being observed at asynchronous points in time
(jobs termination for the different tasks).

The asynchronicity  of  the system makes it  difficult  to  design a  global  controller.  A
simpler  choice  is  a  decentralised  scheme  where  a  dedicated  controller  decides  the
bandwidth of each task looking at the evolution of the task itself in isolation.  This idea is
not  completely  applicable  since  the  bandwidths  chosen  by  the  different  controllers
undergo a  global  constraint  dictated  by  Equation  (2).   A  minor  departure  from the
entirely decentralised scheme is to include a supervisor that, whenever the controllers
violate  the  constraint,  resets  the  values  of  the  bandwidths  to  fix  the  problem (e.g.
operating  a  weighted  compression  or  a  saturation).  From  the  standpoint  of  each
controller,  every  time  the  supervisor  is  forced  to  act  an  impulsive  disturbance  is
experienced (see Figure 3.1). This functionality is located in the QOS Supervisor module
in Figure 1.1.

Single controller general design
The control scheme just introduced consists a collection of controllers attached to each
task and a supervisor that performs corrective actions only when a controller chooses a
value for the bandwidth in contrast with Equation (2) determining an overload condition.
The latter  component  is  described in depth  in  [Abe02-Th] and we will  omit  further
details.   Rather,  this  section  is  mainly  concerned  with  the  design  of  the  dedicated
controllers. In order to reduce the probability of overload conditions, and the subsequent
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supervisory corrections, each controller is constrained by a ``local'' saturation constraint:
bk
iBmax

i . 

Even choosing the saturation values so that ∑
i

Bmax
i U lub , their presence allows one

to pose an upper bound on intensity of the disturbance term that can occur in presence of
a supervisor correction.

From now on, we will concentrate on how to design a controller for a single task and the
i  superscript  will  be  dropped  for  notational  convenience.   Clearly,  the  control

problem would be trivial if the computation time ck  were known before beginning

the k th job.

To compensate for  the lack of  this  knowledge,  we propose  a  scheme based on two
components (see Figure 3.1) : 1) a predictor, upon the termination of J k−1 , supplies a

set of parameters I k related to a prediction of ck ; 2) a controller that decides the

bandwidth  bk  based on  the set  of  parameters I k  and on  the measurements  of
 k  collected from the scheduler. The predictor plays in this scheme an important

role: the more accurate the prediction the better the resulting control performance.

The ability to build an accurate predictor is related to the stochastic properties of the
input process. A very simple predictor is one which is based on statistics (e.g. moving
average) gathered on the past computation times. Actually, we will show that the type of
information that the predictor needs to supply depends on the control scheme.

In the rest of the section we shall show three different control techniques: 

1.  invariant based control

2.  stochastic dead beat control

3.   cost optimal control

In this context, we will simply show the basic ideas and the structureof the controllers.
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Formal proofs on the closed loop stability and other properties can be found in [Pal03-2]
[Pal03b].

Following we present three feedback scheduling algorithms,  then we will give some
implementation details.

Invariant based design
This control scheme has already been presented in [Pal03-2].  We report its description
here  for  the  sake  of  completeness  and to  compare  its  performance  to  other  control
schemes.  The goal of an invariant based controller is to constrain the scheduling error
evolution within a small region [−e , E ] , compensating for the fluctuations of ck .

The  information I k provided  at  each  step  by  the  predictor  is  in  this  case  a  range
[hk , H k ]  where the next computation time ck  is expected to fall.  Assuming that
ck∈[hk , H k ] (correct prediction) the controller is required to behave as follows:

• if  k  belongs to the set  [−e , E ] also   k1  has to belong to the same set
(invariance mode)

• if   k  is  outside  of  [−e , E ]  it  will  be  steered  back  into  [−e , E ] in  a
predetermined number of steps (recovery mode)

Whenever the computation time deviates from the predicted range, it is possible that the
scheduling error exits the invariant region, thus the  recovery control mode is used to
steer it back into the region.

A theoretical discussion on conditions for such a controller to exist as well as on the
problem of mistaken predictions (i.e. ck∉[hk , H k ] ) can be found in the cited paper.
In this context we just summarise results on how to choose the bandwidth:

[step k)] choose bk

∈[H k

T 1E−S  k 
,
hk

T 1−e−S  k  ] if  k 1

∈[H k

T 1E−S  k 
, Bmax ] if  1 k2

=Bmax if  k 2

(5)

where  1=1−e−
hk

T Bmax

 and  2=1E−
H k

T Bmax

.

[step 0)] choose b0 in the same range as for a negative scheduling error.

The control formula just showed embeds the simplest recovery policy, which assigns the
maximum available bandwidth in such situations. Though, alternative policies are also
possible, aiming at achieving a proper trade-off between the speed of the recovery and
the  expense  in  terms  of  used  bandwidth.   For  example,  it  is  possible  to  force  an
exponential reduction of the gap between the scheduling error value and the invariance
region. This is discussed further in [Pal03b].
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Stochastic dead beat approach
This control scheme attacks the design problem in the stochastic domain. The goal is to
choose a bandwidth such that the expectation of the next scheduling error be equal to a
desired  value.  The  expectation  that  we  are  considering  is  conditioned  to  the  past
evolution  of  the  system.   If  the  desired  value  is  zero  we  refer  to  the  controller  as
Stochastic Dead Beat (SDB). It is possible to prove that the control law having such a
property, and satisfying the saturation constraint, can be expressed as follows:

bk={ C k

T 1−s  k 
if  k1−

 C k

Bmax

Bmax if  k1−
 C k

Bmax

} (6)

If  k1−
 C k

TBmax

, then it is not possible to guarantee that the expected next error be

zero.   For  this  control  scheme the information  I k  required from the  predictor  is
 C k

, i.e.  the expectation of  ck  conditioned to the past evolution of the system.
This  can be done,  for  example,  with a  moving average performed on last  execution
times.  Despite its simplicity, this technique is able to achieve a very good performance,
as we will show in Section~\ref{sec:experiments}.

Optimal cost approaches
This technique is also based on the framework of stochastic control. In particular, taking
inspiration from dynamic programming techniques  [Ros83], the controller chooses the
value  for  the  bandwidth  Bk so  as  to  optimise  the  expectation  w  , b
(conditioned to the past evolution of the system) of a cost function $ w  , . , b . Such
a function expresses, at step  k , the cost to pay if we choose the bandwidth value

bk=b , if the achieved next system state is  k1= .

In particular we chose a cost function accounting for the deviation of the next scheduling
error from zero, and the bandwidth being used: 

w  k1 , b=  k1
2 1− b ,  where   ∈0,1 allows us to assign different

weights to the scheduling error or to the used bandwidth.

In  case   k=1 ,  the  minimum  is  immediately  found  as

bk=[3]2 
1−

 2 2

In the other cases the following formula holds:

OCERA  IST 35102 27



bk  k  = s qrt [3]  k [3]−  k 

 =
  2 2
1− 

   =  
1− 

2

 2 2 2 2
3
  [1−S  k ]

1− 
3

This formula can be directly used for all  k '=1
3

2 C
[3] 

1−
 2 2 ,

which is the range for which   k is real. For  k ' , the formula still holds if
computations are properly performed in the complex domain.  Furthermore, note that the
optimum bandwidth value  found with  this  formula  is  subject  to  the usual  saturation
constraint due to Bmax . As for the case of SDB, we used   for the expectation of

ck , while   denotes its standard deviation.  Both quantities are conditioned to the
past evolution of the system and are the required output of the predictor for this control
scheme.

Figure 3.4 reports the optimal B  k   function for a particular set of parameters.  The
same figure makes also a comparison with the bandwidth function in Equation (6).

An important  problem with  this  approach  is  that  the  computation  of  the  bandwidth
requires several floating point operations for which it is not immediate to achieve an
efficient kernel implementation.  For fixed    and     the problem is relatively
simpler  in  that  it  is  possible  to  do  efficient  linear  interpolations  of  the  curve.  For
dynamically changing parameters, more sophisticated techniques are required and they
are currently under investigation.
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Figure 3.4 Optimal B(.) function for the optimal cost  approach compared with SDB. 



Minimum expected square scheduling error

A special  case  for  the technique shown above is  when  =1 .   In  this  case,  the
controller  minimises,  at  each  step,  the  expectation  of  the  squared  value of  the  next
scheduling error, subject to the saturation constraint.  The optimisation problem yields,
in this case, a simpler formula: control law: 

B  k ={  2 2

 [1−S  ]
if ,1−

 2 2

 Bmax

Bmax if  k1−
 2 2

 Bmax

} (7)

Note that this solution is only valid if Bmax
 2 2


=

 2


.

If  such relation does not  hold,  the  optimal control  reduces to the trivial  law always
returning Bmax . 

The optimal bandwidth assignment that we got is is equal to the one given by the SDB
formula  (6),  plus  a  factor  that  is  proportional  to  the  input  process  variance   2 .

Perfect  equivalence  with  SDB  is  there  only  in  the  limit  for   0 .   This  is

reasonable: since here we want to minimise the squared value of   k  rather than its

expectation,  we have to take  into  account  the  standard deviation    using  larger
bandwidth valued to compensate for it.

3.5 Implementation of the QoS manager

In general, different applications may need different controller strategies. Each module
will manage all tasks with the same characteristics, that need to be served by the same
control algorithm. A task can choose the QoS manager for its execution by specifying, in
the  sched_setscheduler()  call,  the   SCHED_QMGR1,  SCHED_QMGR2,  etc  ...
scheduling  policy,  and  by  providing  proper  parameters  to  the  module  through  the
sched_param structure.
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int main()
{

// initialization
   sched_param param;
   // init controller parameters
   sched_setscheduler(mypid, SCHED_QMGR1, &param);

while (1) {
      //main loop code
      qmgr_end_cycle();
      qmgr_wait_period();

}
}

Figure 3.5 Typical structure of a cyclic task.



A task using adaptive reservations must be linked against the qos library, that provides
some commodity function implementing the user-level part  of the feedback strategy.
Recall that only periodic tasks are considered. As a result, a task attached to an adaptive
reservation will have the structure shown in Figure 3.5 (the sequence of invocations is
shown in Figure 3.6 as a sequence diagram).

At  the  beginning,  the  task  must  perform  an  initialization  phase  in  which  the
setsched_hook of the QMGR1 module is invoked. After storing the controller parameters
in its internal data structures, the QMGR1 module invokes the qspv_request _create()
function of the QSPV module to initialize the reservation budget and period. 

After initialization, the task enters a loop. Each execution of the loop corresponds to a
job of the task. For example, in case of a MPEG decoder, a job may correspond to the
decoding  of  one  frame.  At  the  end  of  the  loop,  the  task  signals  the  QMGR  the
termination  of  the  job  by  invoking  the  qmgr_end_cycle()  function  provided  by  the
qoslib.

The  qoslib  will  then  call  the  proper   QMGR1  handler,  which,  in  turn,  calls  the
qres_get_consumed()  function of  the  QRES module  to  obtain  the amount of  budget
consumed by the job.

Then,  the  control  law  is  applied  and  a  new  budget  is  computed  and  set  with  the
qspv_change  _budget()  function of  the   QSPV module.  If  there  is  not  enough  free
bandwidth to accommodate for the new budget, the QoS supervisor can implement three
possible behaviours, similar to the ones described in the previous section:  saturation,
compression,  or  reject.  In  case the saturation policy is  selected, the highest  possible
budget is assigned to the task so that the total CPU utilization does not exceed U lub .
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Figure 3.6Sequence diagram that shows the interaction between the  QMGR the
QSPV and the QRES modules.



In  case  the  compression  policy  is  selected,  all  the  reservations  are  recomputed
(``compressed'') so that we can make enough space for the new request (see [Abe99-3],
[Abe02-Th]). In case the reject policy is specified, the bandwidth adaptation fails (i.e.,
the budget is not changed).  In any case, the qspv_change_budget() returns the actual
value of the budget that has been set.

Finally, the task blocks waiting for the next periodic event by calling the  wait_period()}
function provided by qoslib. The periodic behaviour of the task is application dependent.
In other words, it is the responsibility of the application to set up a periodic timer event
and to block waiting for the event (although the qoslib provides some helper functions
for setting up periodic tasks).

3.6 Experimental results

In this  section we report  experimental  results  gathered on a real  Linux system.  The
considered application is a MPEG decoder.  While the OS infrastructure described above
is at advanced testing stage, the adaptation of a MPEG player (namely, the xine  player)
is still under way.  Therefore, we emulated the behaviour of the decoder by a task that
periodically reads a trace file and, for each job, consumes a time equal to the one read
from the file (by a time consuming loop).  The trace file has been provided by Philips
Research labs and refers to the same movie the segment in next figure is taken from.  

In the first set of experiment, we wanted to gauge the benefit of the feedback scheduling
mechanism.  In the second set of experiments we compared the performance of different
controllers. Finally, in the third set of experiments, we evaluated the influence of the
predictor component. 

Benefits of feedback
Consider again the MPEG decoding times shown in Figure  3.2. Figure  3.7 shows the
scheduling  error  evolution  that  is  achieved  when  the  bandwidth  is  allocated  by  an
invariant-based QoS controller, for the same input sequence. The predictor, in this case,
produces at each step an interval [hk , H k ]  based on moving averages of the last ten

samples.  In  particular  hk= k− k $  and  H k= k k  where   k  is  the

moving average and   k  is the moving variance. The invariant region  [−e , E ]
was fixed apriori and the controller law is chosen in mid-point of the admissible range
(Equation (5)).

The only significant deviation from the target set (around the 790th sample) is due to a
swift scene change, which messes up the moving average predictor, but is a transient
problem soon recovered.  A visual comparison between Figures 3.2 and 3.7 is illustrative
of the extent of the achieved performance enhancement.
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Figure 3.7Scheduling error evolution resulting from the application of an invariant
based QoS controller to the input sequence of Figure 3.2(a)
Figure 3.8Comparison of the performance achieved by traditional PI-based,  invariant-
based and stochastic dead beat controllers, while playing  an MPEG movie

Figure 3.9Comparison of the performance achieved by traditional PI-based,  invariant-
based and stochastic dead beat controllers, when multiple  averages are used in last two
types of control.

Figure 3.10 Job execution times for an MPEG Movie with fixed frame types pattern
IBBPBBPBBPBB.

Figure 3.11Scheduling error PDF obtained with a single moving average vs. 3 and 12
multiple moving averages.



Comparing PI with invariant-based
For the purpose of evaluating the performance achieved by our approach, it is useful to
make  comparisons  with  alternative  approaches.  A feedback  controller  that  has  been
studied in the past is a classic linear PI controller, like the one introduced in [PalAbe]. In
that  approach,  the  authors  used  a  controller  assigning  the  bandwidth  at  each  step
depending on the value of the scheduling error at the current and previous steps (linear
action),  and  on  the  bandwidth  value  assigned  at  the  previous  step  (integral  action).
Statistics have been gathered by a run of that controller, and a run of the invariant-based
controller as introduced in this work, with exactly the same trace of decoding times from
an MPEG2 movie. Obtained scheduling error PMFs are shown in Figure 3.8. The figure
highlights  that  an  invariant  based  control  achieves  a  PMF  very  similar  to  the  one
achieved by a stochastic dead beat control. Both of them manage to keep the scheduling
error within a region near the origin, in a tighter manner with respect to what has been
achieved by using a PI based control. The parameters of the controllers have been chosen
so to perform a comparison at similar achieved mean values for the scheduling error, and
a single moving average has been used in order to estimate the input process statistics.
Clearly,  by using multiple moving averages,  the approaches introduced in this paper
achieve a much tighter  scheduling error  distribution, around the origin,  as  shown in
Figure 3.9.

Predicting computation times
The approach to QoS control in scheduling of soft real-time tasks proposed so far is
based on the knowledge of a quite small interval [cm k  , cM k ]  in which the next
job execution time is supposed to reside with a high probability (in the probabilistic
bound  model).  The  way  such  a  prediction  can  be  performed  is  highly  application-
dependent. In this paragraph, a brief example shows how the proper choice of a predictor
for job execution times can dramatically improve performance of the QoS controller
relative to an MPEG decoder. A common class of MPEG movies has a periodic structure
in the frame types, i.e. there exist a fixed sequence of frame types that repeats over and
over  during  the  movie  (a  common  example  is  IBBPBBPBBPBBIBBP...).  Decoding
times for various frame types are typically different, so that, looking closely at the job
execution times, it is possible to notice a periodic structure repeating all over the movie
(see  Fig.  3.10).   In  such a case,  a  simple  moving average (plus  a  moving standard
deviation) among job execution times completely fails in helping predicting the position
of the next sample, because the periodic load peaks corresponding to frames of type 'I'
cannot be predicted. Instead, it is much better to consider a different moving average for
each different class of load level. Figure 3.11 highlights the performance improvement
achieved with an approach of this kind. In fact, the scheduling error PDF is much more
narrow,  resulting  in  a  much  more  effective  task  control.  The  figure  shows  results
obtained with a variable number of moving averages, each one operating every 3 and 12
execution time samples.  
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