
WP7 – Communication Components

Deliverable D7.4 Communication components
V2

D7.4_rep - Communication Components
by Jan Krakora, Pavel Pisa, Frantisek Vacek, Zdenek Sebek, Petr Smolik, and Zdenek Hanzalek

Published February 2004
Copyright © 2004 by Ocera
You can (in fact you must!) use, modify, copy and distribute this document, of course free of charge, and think about the

appropriate license we will use for the documentation.

Table of Contents
Preface...i
1. OCERA Real-Time Ethernet ..1

1.1. ORTE ..1
1.1.1. Sumary..1
1.1.2. Description..1
1.1.3. API / Compatibility...1

1.1.3.1. Data types ...1
enum SubscriptionMode ...1
enum SubscriptionType ..2
enum ORTERecvStatus ..2
enum ORTESendStatus..3
struct ORTEIFProp...3
struct ORTEMulticastProp...3
struct ORTECDRStream ..4
struct ORTETypeRegister ..5
struct ORTEDomainBaseProp ...5
struct ORTEDomainWireProp ...6
struct ORTEPublProp...7
struct ORTESubsProp ..8
struct ORTEAppInfo ...8
struct ORTEPubInfo ...9
struct ORTESubInfo ...10
struct ORTEPublStatus..10
struct ORTESubsStatus ...11
struct ORTERecvInfo..11
struct ORTESendInfo ...12
struct ORTEDomainAppEvents ...12
struct ORTETasksProp...14
struct ORTEDomainProp ...14

1.1.3.2. Functions...15
IPAddressToString ..15
StringToIPAddress ..15
NtpTimeToStringMs ...16
NtpTimeToStringUs..16
ORTEDomainStart..16
ORTEDomainPropDefaultGet..17
ORTEDomainInitEvents ..17
ORTEDomainAppCreate ..18
ORTEDomainAppDestroy ..18
ORTEDomainAppSubscriptionPatternAdd19
ORTEDomainAppSubscriptionPatternRemove.............................20
ORTEDomainAppSubscriptionPatternDestroy.............................20
ORTEDomainMgrCreate ..21
ORTEDomainMgrDestroy ..21
ORTEPublicationCreate ...22
ORTEPublicationDestroy ...22
ORTEPublicationPropertiesGet ...23
ORTEPublicationPropertiesSet..23
ORTEPublicationGetStatus ...24
ORTEPublicationSend ..24
ORTESubscriptionCreate ...24
ORTESubscriptionDestroy ...25
ORTESubscriptionPropertiesGet ...26

iii

ORTESubscriptionPropertiesSet..26
ORTESubscriptionWaitForPublications ..26
ORTESubscriptionGetStatus ...27
ORTESubscriptionPull ...27
ORTETypeRegisterAdd ..28
ORTETypeRegisterDestroyAll ...28
ORTEVerbositySetOptions ...29
ORTEVerbositySetLogFile..29
ORTEInit ...30
ORTEAppSendThread ..30
ORTESleepMs ...30

1.1.3.3. Macros ...31
SeqNumberCmp ..31
SeqNumberInc...31
SeqNumberAdd ...32
SeqNumberDec..32
SeqNumberSub ...32
NtpTimeCmp...33
NtpTimeAdd ..33
NtpTimeSub ..34
NtpTimeAssembFromMs..34
NtpTimeDisAssembToMs ...35
NtpTimeAssembFromUs ..35
NtpTimeDisAssembToUs..35
Domain2Port..36
Domain2PortMulticastUserdata ..36
Domain2PortMulticastMetatraffic ...37

1.1.4. Implementation issues ...37
1.1.5. Tests ..39
1.1.6. Examples...39
1.1.7. Installation instructions ..41

1.2. Real Time Ethernet analyzer ..41
1.2.1. Sumary..41
1.2.2. Description..42
1.2.3. API / Compatibility...42
1.2.4. Implementation issues ...42
1.2.5. Tests ..42
1.2.6. Examples...42
1.2.7. Installation instructions ..43

2. Linux/RT-Linux CAN Driver (LinCAN) ...44
2.1. LinCAN Summary ...44

2.1.1. Summary...44
2.2. LinCAN Driver Description...45

2.2.1. Introduction ..45
2.3. LinCAN Driver System Level API ..46

2.3.1. Device Files and Message Structure ...46
2.3.2. CAN Driver File Operations ..47

open ..47
close ..47
read...48
write..48
struct canfilt_t..49
IOCTL CANQUE_FILTER..49
IOCTL CANQUE_FLUSH ..50

2.4. LinCAN Driver Architecture ...50

OCERA. IST 35102 iv

2.5. Driver History and Implementation Issues..53
2.6. LinCAN Driver Internals ..54

2.6.1. Basic Driver Data Structures ..55
struct canhardware_t ..55
struct candevice_t ..55
struct chip_t ...56
struct msgobj_t...58
struct canuser_t ...59
struct hwspecops_t...60
struct chipspecops_t...61

2.6.2. Board Support Functions ...62
template_request_io...62
template_release_io ...63
template_reset ...63
template_init_hw_data..64
template_init_chip_data..64
template_init_obj_data ..65
template_program_irq ...66
template_write_register ..66
template_read_register..67

2.6.3. Chip Support Functions ...67
sja1000p_enable_configuration ...68
sja1000p_disable_configuration ..68
sja1000p_chip_config ...68
sja1000p_extended_mask..69
sja1000p_baud_rate...69
sja1000p_read ..70
sja1000p_pre_read_config ...70
sja1000p_pre_write_config ..71
sja1000p_send_msg ...71
sja1000p_check_tx_stat ...72
sja1000p_set_btregs...72
sja1000p_start_chip...73
sja1000p_stop_chip ..73
sja1000p_remote_request ..74
sja1000p_standard_mask..74
sja1000p_clear_objects...75
sja1000p_config_irqs..75
sja1000p_irq_write_handler..76
sja1000p_irq_handler ..76
sja1000p_wakeup_tx..77

2.6.4. CAN Queues Common Structures and Functions77
struct canque_slot_t...77
struct canque_fifo_t ...78
canque_fifo_get_inslot ...79
canque_fifo_put_inslot ...79
canque_fifo_abort_inslot..80
canque_fifo_test_outslot ..80
canque_fifo_free_outslot ..80
canque_fifo_again_outslot ...81
struct canque_edge_t ...81
struct canque_ends_t ...83
canque_notify_inends ..84
canque_notify_outends ..84
canque_notify_bothends ..84

OCERA. IST 35102 v

canque_activate_edge ..85
canque_filtid2internal ...85
canque_fifo_flush_slots ..86
canque_fifo_init_slots ..86
canque_get_inslot ..86
canque_get_inslot4id ...87
canque_put_inslot ..88
canque_abort_inslot...88
canque_filter_msg2edges...89
canque_test_outslot ...89
canque_free_outslot ...90
canque_again_outslot ..90
canque_set_filt ...91
canque_flush ..91
canqueue_ends_init_gen..92
canqueue_connect_edge...92
canqueue_disconnect_edge..93
canqueue_block_inlist..93
canqueue_block_outlist..93
canqueue_ends_kill_inlist ...94
canqueue_ends_kill_outlist ...94

2.6.5. CAN Queues Kernel Specific Functions..95
canqueue_notify_kern..95
canqueue_ends_init_kern..95
canque_get_inslot4id_wait_kern...95
canque_get_outslot_wait_kern..96
canque_sync_wait_kern...97
canque_fifo_init_kern ..97
canque_fifo_done_kern ..98
canque_new_edge_kern ...98
canqueue_ends_dispose_kern..98

2.6.6. CAN Queues RT-Linux Specific Functions..99
canqueue_rtl2lin_check_and_pend ...99
canque_get_inslot4id_wait_rtl ..99
canque_get_outslot_wait_rtl ...100
canque_sync_wait_rtl ..101
canque_fifo_init_rtl ..101
canque_fifo_done_rtl ..101
canque_new_edge_rtl...102
canqueue_notify_rtl ...102
canqueue_ends_init_rtl ...103
canqueue_ends_dispose_rtl ...103
canqueue_rtl_initialize ..103
canqueue_rtl_done ...104

2.6.7. CAN Queues CAN Chips Specific Functions104
canqueue_notify_chip ..104
canqueue_ends_init_chip...104
canqueue_ends_done_chip...105

2.6.8. CAN Boards and Chip Setup specific Functions.................................105
can_checked_malloc ...105
can_checked_free ...106
can_del_mem_list...106
can_request_io_region ...106
can_release_io_region ..107
can_request_mem_region ..107

OCERA. IST 35102 vi

can_release_mem_region...108
can_base_addr_fixup..108
register_obj_struct ...109
register_chip_struct ...109
init_hw_struct ..110
init_device_struct...110
init_chip_struct ..111
init_obj_struct ..111
init_hwspecops ...112
init_chipspecops ...112
can_chip_setup_irq ..113
can_chip_free_irq ...113

2.6.9. CAN Boards and Chip Finalization Functions114
msgobj_done ...114
canchip_done..114
candevice_done...114
canhardware_done...115

2.7. LinCAN Usage Information ..115
2.7.1. Installation Prerequisites ..115
2.7.2. Quick Installation Instructions ...116
2.7.3. Installation instructions ..116
2.7.4. Simple Utilities...118

readburst ..119
sendburst..120

3. CAN/CANopen...122
3.1. Virtual CAN API (VCA) ...122

3.1.1. Summary...122
3.1.2. Description..122
3.1.3. API / Compatibility...122

3.1.3.1. VCA API ..122
struct canmsg_t ...122
vca_h2log ...123
vca_open_handle ...123
vca_close_handle ...124
vca_send_msg_seq...124
vca_rec_msg_seq..125
vca_wait ...125
vca_log..126
vca_log_redir..126

3.1.4. Implementation issues ...127
3.1.5. Tests ..128
3.1.6. Examples...128
3.1.7. Installation instructions ..128

3.2. CAN device ...128
3.2.1. Summary...128
3.2.2. Description..128
3.2.3. API / Compatibility...129

3.2.3.1. PDO processor API ...129
struct vcapdo_mapping_t..129
struct vcapdolst_object_t...129
struct vcapdolst_root_t..130
struct vcaPDOProcessor_t ..131
vcaPDOProcessor_init...131
vcaPDOProcessor_destroy ..132
vcaPDOProcessor_setOD..132

OCERA. IST 35102 vii

vcaPDOProcessor_createPDOList..132
_vcaPDOProcessor_disconnectDinfoLinks...................................133
vcaPDOProcessor_makeDinfoLinks...133
vcaPDOProcessor_processMsg ...134

3.2.3.2. SDO FSM API...134
struct vcasdo_fsm_t...134
vcasdo_fsm_upload1..135
vcasdo_fsm_download1 ...135
vcasdo_read_multiplexor ..136
vcasdo_error_msg..136
vcasdo_init_fsm ...137
vcasdo_destroy_fsm...137
vcasdo_fsm_idle...137
vcasdo_fsm_run ...138
vcasdo_fsm_abort ..138
vcasdo_fsm_upload..138
vcasdo_fsm_download ...139
vcasdo_fsm_taste_msg ..140
vcasdo_abort_msg ...140

3.2.3.3. Object Dictionary API...140
struct vcaod_root_t..140
struct vcaod_object_t...141
_vcaod_find_object...142
vcaod_get_value...143
vcaod_set_value...143
vcaod_od_free ..144
vcaod_load_eds ..144
vcaod_dump_od ...145
vcaod_get_dinfo_ref...145

3.2.3.4. canslave command line parameters...146
3.2.3.5. CANmaster command line parameters146

3.2.4. Implementation issues ...146
3.2.4.1. Architecture overview...147
3.2.4.2. CANopen slave..148
3.2.4.3. CANopen master...148

3.2.5. Tests ..149
3.2.6. Examples...149
3.2.7. Installation instructions ..149

3.3. CAN monitor ..149
3.3.1. Summary...149
3.3.2. Description..149

3.3.2.1. canmond - CAN/CANopen proxy..149
3.3.2.2. testclient..150
3.3.2.3. CanMonitor ...150

3.3.3. API / Compatibility...151
3.3.3.1. canmond ..151
3.3.3.2. testclient..152
3.3.3.3. CanMonitor ...152

3.3.4. Implementation issues ...152
3.3.4.1. canmond ..152

3.3.5. Tests ..154
3.3.6. Examples...154

3.3.6.1. Example 1 - connecting to real CANopen device.....................154
3.3.6.2. Example 2..155

3.3.7. Installation instructions ..155

OCERA. IST 35102 viii

4. Verifications ..157
4.1. CAN model by timed automata ...157

4.1.1. Sumary..157
4.1.2. Description..157

4.1.2.1. Problem statement..157
4.1.2.2. CAN bus description ...158

4.1.2.2.1. Real-time data transmission ..158
4.1.2.2.2. Message frame formats...159
4.1.2.2.3. Detecting and signalling errors....................................159

4.1.3. API/Compatibility...160
4.1.4. Implementation issues ...160

4.1.4.1. Bit-wise arbitration model ...161
4.1.4.2. Transceiver model...161
4.1.4.3. Bus model..162

4.1.5. Tests ..162
4.1.6. Examples...162

4.1.6.1. Case study 1 - Application process model................................163
4.1.6.1.1. Comparison with traditional approach164

4.1.6.2. Case study 2 - Anti-lock Braking System................................165
4.1.6.2.1. Verification...170

4.1.7. Installation instructions ..170
Bibliography ...171

4.2. Verification of cooperative scheduling and interrupt handlers171
4.2.1. Sumary..171
4.2.2. Description..172

4.2.2.1. Abstract ...172
4.2.2.2. Introduction ..172

4.2.3. API/Compatibility...175
4.2.4. Implementation issuses ...175

4.2.4.1. Cooperative scheduling...175
4.2.4.2. Interrupts ..177
4.2.4.3. Inter process communication primitives179

4.2.4.3.1. Semaphore ...179
4.2.4.4. Conclusion and future work ...180

4.2.5. Implementation issuses ...181
4.2.6. Tests ..181
4.2.7. Examples...181

4.2.7.1. Example of system with interrupt ...181
Bibliography ...182

OCERA. IST 35102 ix

List of Tables
4-1. Process parameters table ...164
4-2. Results of the experiment related to property 4 and 5...165
4-3. Results of the experiment related to property 4 and 5 with the operating system

delay...165
4-4. Processor 1 RTOS system parameters ..170
4-5. Processor 2 RTOS system parameters ..170
4-6. Message Parameters ..170

List of Figures
1-1. Communication among network objects.. ??
1-2. Screenshot...42
2-1. LinCAN architecture ..51
2-2. LinCAN message FIFO implementation...51
2-3. LinCAN driver message flow graph edges ..52
2-4. CAN hardware model in the LinCAN driver ..52
3-1. Hard real time CAN driver usage example...127
3-2. Soft real time CAN driver usage example...127
3-3. RT-CANopen device architecture...147
3-4. Connecting canmond ..150
3-5. CAN monitor CAN messages window ...150
3-6. The Object Dictionary tree view ..150
3-7. The CanMonitor configuration dialog ...151
3-8. CanMonitor testing ..154
4-1. Real time control system structure with denotation of computation/communication

times ..158
4-2. CAN message frame format ...161
4-3. Arbitration model (in UPPAAL like notation) ..161
4-4. Transceiver model ..162
4-5. Bus model..162
4-6. Case study system configuration ...163
4-7. Periodic application process model ..163
4-8. Sporadic application process model...163
4-9. Worst-case response time equation ...165
4-10. Worst-case queueing delay equation ...165
4-11. Structure of the distributed system - ABS control ...166
4-12. Two state brake pedal ..166
4-13. Brake pedal model..166
4-14. Processor 1 structure..166
4-15. Timed automaton model of Task1 ...167
4-16. Timed automaton model of Task2 ...167
4-17. Processor 2 structure..168
4-18. ABS controller state diagram ..168
4-19. Timed automaton model of ABSTask algorithm...169
4-20. Timed automaton model of brakes ..169
4-21. Timed automaton model of acceleration sensor..169
4-22. State transition diagram of the process in the multitasking operating system .174
4-23. Example of monoprocessor scheduling anomaly...175
4-24. Model of the application process executed under cooperative scheduling policy 175
4-25. Synchronisation of cooperative scheduler with application processes176
4-26. One automaton (Schi) of the cooperative scheduler in Figure 4-25.....................176
4-27. System architecture with interrupt server ...178
4-28. Interrupt server routines ..178

x

4-29. Computation location considering interrupts ...178
4-30. Time diagram of ISR execution within interrupt server.......................................178
4-31. Model of process containing Take and Give one semaphore180
4-32. Scheduler model containing Take and Give of one semaphore (extension of Figure

4-26) ...180
4-33. Automaton wFifoQueue providing writing to the FIFO queue............................180
4-34. Interconnection of sample automata ...181
4-35. Model of Environment generating IRQ...182
4-36. Model of hardware interrupt controller ..182
4-37. ISR_Server model ...182
4-38. Model of high-priority process Proc_Int ..182
4-39. Model of low-priority periodic process Proc_Period ..182

OCERA. IST 35102 xi

Preface
This document presents elaborated version of communication component design report.
It is composed of three chapters. The first and second chapters deal with design of com-
munication stacks - RT Ethernet or CAN/CANopen respectively including analysis tools.
The third chapter presents Basic features of verification methodology of distributed sys-
tems based on standard verification tools.

i

Chapter 1. OCERA Real-Time Ethernet

1.1. ORTE
The Ocera Real-Time Ethernet (ORTE) is open source implementation of RTPS commu-
nication protocol. RTPS is new application layer protocol targeted to real-time commu-
nication area, which is build on the top of standard UDP stack. Since there are many
TCP/IP stack implementations under many operating systems and RTPS protocol does
not have any other special HW/SW requirements, it should be easily ported to many
HW/SW target platforms. Because it uses only UDP protocol, it retains control of timing
and reliability.

1.1.1. Sumary
Name of the component

OCERA Real-Time Ethernet
Author

Petr Smolik
Reviewer

not validated
Layer

High-level
Version

0.1 alfa
Status

Alfa
Dependencies

Any Ethernet adapter and standard TCP/IP stack.
Release date

N/A

1.1.2. Description
The Ocera Real-Time Ethernet (ORTE) is open source implementation of RTPS commu-
nication protocol. This protocol is being to submit to IETF as an informational RFC and
has been adopted by the IDA group.

1.1.3. API / Compatibility

1.1.3.1. Data types

enum SubscriptionMode

Name
enum SubscriptionMode — mode of subscription

Synopsis

enum SubscriptionMode {
PULLED,
IMMEDIATE

};

1

Chapter 1. OCERA Real-Time Ethernet

Constants
PULLED

polled
IMMEDIATE

using callback function

Description
Specifies whether user application will poll for data or whether a callback function will
be called by ORTE middleware when new data will be available.

enum SubscriptionType

Name
enum SubscriptionType — type of subcsription

Synopsis

enum SubscriptionType {
BEST_EFFORTS,
STRICT_RELIABLE

};

Constants
BEST_EFFORTS

best effort subscription
STRICT_RELIABLE

strict reliable subscription.

Description
Specifies which mode will be used for this subscription.

enum ORTERecvStatus

Name
enum ORTERecvStatus — status of a subscription

Synopsis

enum ORTERecvStatus {
NEW_DATA,
DEADLINE

};

Constants
NEW_DATA

new data has arrived
DEADLINE

deadline has occurred

OCERA. IST 35102 2

Chapter 1. OCERA Real-Time Ethernet

Description
Specifies which event has occured in the subscription object.

enum ORTESendStatus

Name
enum ORTESendStatus — status of a publication

Synopsis

enum ORTESendStatus {
NEED_DATA,
CQL

};

Constants
NEED_DATA

need new data (set when callback function specified for publciation is beeing called)
CQL

transmit queue has been filled up to critical level.

Description
Specifies which event has occured in the publication object. Critical level of transmit
queue is specified as one of publication properties (ORTEPublProp.criticalQueueLevel).

struct ORTEIFProp

Name
struct ORTEIFProp — interface flags

Synopsis

struct ORTEIFProp {
int32_t ifFlags;
IPAddress ipAddress;

};

Members
ifFlags

flags
ipAddress

IP address

Description
Flags for network interface.

OCERA. IST 35102 3

Chapter 1. OCERA Real-Time Ethernet

struct ORTEMulticastProp

Name
struct ORTEMulticastProp — properties for ORTE multicast (not supported yet)

Synopsis

struct ORTEMulticastProp {
Boolean enabled;
unsigned char ttl;
Boolean loopBackEnabled;
IPAddress ipAddress;

};

Members
enabled

ORTE_TRUE if multicast enabled otherwise ORTE_FALSE
ttl

time-to-live (TTL) for sent datagrams
loopBackEnabled

ORTE_TRUE if data should be received by sender itself otherwise ORTE_FALSE
ipAddress

desired multicast IP address

Description
Properties for ORTE multicast subsystem which is not fully supported yet. Multicast IP
address is assigned by the ORTE middleware itself.

struct ORTECDRStream

Name
struct ORTECDRStream — used for serialization

Synopsis

struct ORTECDRStream {
char * buffer;
char * bufferPtr;
Boolean needByteSwap;
int length;

};

Members
buffer

buffer for data
bufferPtr

current position within buffer
needByteSwap

ORTE_TRUE if it is necessary to swap byte ordering otherwise ORTE_FALSE
length

buffer length

OCERA. IST 35102 4

Chapter 1. OCERA Real-Time Ethernet

Description
Struct ORTECDRStreamis used by serialization and deserialization functions.

struct ORTETypeRegister

Name
struct ORTETypeRegister — registered data type

Synopsis

struct ORTETypeRegister {
const char * typeName;
ORTETypeSerialize serialize;
ORTETypeDeserialize deserialize;
unsigned int getMaxSize;

};

Members
typeName

name of data type
serialize

pointer to serialization function
deserialize

pointer to deserialization function
getMaxSize

max data type length in bytes

Description
Contains description of registered data type. See ORTETypeRegisterAdd function for
details.

struct ORTEDomainBaseProp

Name
struct ORTEDomainBaseProp — base properties of a domain

Synopsis

struct ORTEDomainBaseProp {
NtpTime expirationTime;
NtpTime refreshPeriod;
NtpTime purgeTime;
NtpTime repeatAnnounceTime;
NtpTime repeatActiveQueryTime;
NtpTime delayResponceTimeACKMin;
NtpTime delayResponceTimeACKMax;
unsigned int HBMaxRetries;
unsigned int ACKMaxRetries;
NtpTime maxBlockTime;

};

OCERA. IST 35102 5

Chapter 1. OCERA Real-Time Ethernet

Members
expirationTime

specifies how long is this application taken as alive in other applications/managers
(default 180s)

refreshPeriod
how often an application refresh itself to its manager or manager to other managers
(default 60s)

purgeTime
how often the local database should be cleaned from invalid (expired) objects (de-

fault 60s)
repeatAnnounceTime

This is the period with which the CSTWriter will announce its existence and/or
the availability of new CSChanges to the CSTReader. This period determines how
quickly the protocol recovers when an announcement of data is lost.

repeatActiveQueryTime
???

delayResponceTimeACKMin
minimum time the CSTWriter waits before responding to an incoming message.

delayResponceTimeACKMax
maximum time the CSTWriter waits before responding to an incoming message.

HBMaxRetries
how many times a HB message is retransmitted if no response has been received

until timeout
ACKMaxRetries

how many times an ACK message is retransmitted if no response has been received
until timeout

maxBlockTime
timeout for send functions if sending queue is full (default 30s)

struct ORTEDomainWireProp

Name
struct ORTEDomainWireProp — wire properties of a message

Synopsis

struct ORTEDomainWireProp {
unsigned int metaBytesPerPacket;
unsigned int metaBytesPerFastPacket;
unsigned int metabitsPerACKBitmap;
unsigned int userMaxSerDeserSize;

};

Members
metaBytesPerPacket

maximum number of bytes in single frame (default 1500B)
metaBytesPerFastPacket

maximum number of bytes in single frame if transmitting queue has reached
criticalQueueLevel level (see ORTEPublProp struct)

metabitsPerACKBitmap
not supported yet

OCERA. IST 35102 6

Chapter 1. OCERA Real-Time Ethernet

userMaxSerDeserSize
maximum number of user data in frame (default 1500B)

struct ORTEPublProp

Name
struct ORTEPublProp — properties of a publication

Synopsis

struct ORTEPublProp {
PathName topic;
TypeName typeName;
TypeChecksum typeChecksum;
Boolean expectsAck;
NtpTime persistence;
u_int32_t reliabilityOffered;
u_int32_t sendQueueSize;
int32_t strength;
u_int32_t criticalQueueLevel;
NtpTime HBNornalRate;
NtpTime HBCQLRate;
unsigned int HBMaxRetries;
NtpTime maxBlockTime;

};

Members
topic

the name of the information in the Network that is published or subscribed to
typeName

the name of the type of this data
typeChecksum

a checksum that identifies the CDR-representation of the data
expectsAck

indicates wherther publication expects to receive ACKs to its messages
persistence

indicates how long the issue is valid
reliabilityOffered

reliability policy as offered by the publication
sendQueueSize

size of transmitting queue
strength

precedence of the issue sent by the publication
criticalQueueLevel

treshold for transmitting queue content length indicating the queue can became
full immediately

HBNornalRate
how often send HBs to subscription objects

HBCQLRate
how often send HBs to subscription objects if transmittiong queue has reached

criticalQueueLevel

HBMaxRetries
how many times retransmit HBs if no replay from target object has not been re-

ceived

OCERA. IST 35102 7

Chapter 1. OCERA Real-Time Ethernet

maxBlockTime
unsupported

struct ORTESubsProp

Name
struct ORTESubsProp — properties of a subscription

Synopsis

struct ORTESubsProp {
PathName topic;
TypeName typeName;
TypeChecksum typeChecksum;
NtpTime minimumSeparation;
u_int32_t recvQueueSize;
u_int32_t reliabilityRequested;
//additional parametersNtpTime deadline;
u_int32_t mode;

};

Members
topic

the name of the information in the Network that is published or subscribed to
typeName

the name of the type of this data
typeChecksum

a checksum that identifies the CDR-representation of the data
minimumSeparation

minimum time between two consecutive issues received by the subscription
recvQueueSize

size of receiving queue
reliabilityRequested

reliability policy requested by the subscription
deadline

deadline for subscription, a callback function (see ORTESubscriptionCreate) will
be called if no data were received within this period of time

mode
mode of subscription (strict reliable/best effort), see SubscriptionType enum for

values

struct ORTEAppInfo

Name
struct ORTEAppInfo —

OCERA. IST 35102 8

Chapter 1. OCERA Real-Time Ethernet

Synopsis

struct ORTEAppInfo {
HostId hostId;
AppId appId;
IPAddress * unicastIPAddressList;
unsigned char unicastIPAddressCount;
IPAddress * metatrafficMulticastIPAddressList;
unsigned char metatrafficMulticastIPAddressCount;
Port metatrafficUnicastPort;
Port userdataUnicastPort;
VendorId vendorId;
ProtocolVersion protocolVersion;

};

Members
hostId

hostId of application
appId

appId of application
unicastIPAddressList

unicast IP addresses of the host on which the application runs (there can be multi-
ple addresses on a multi-NIC host)

unicastIPAddressCount
number of IPaddresses in unicastIPAddressList

metatrafficMulticastIPAddressList
for the purposes of meta-traffic, an application can also accept Messages on this set
of multicast addresses

metatrafficMulticastIPAddressCount
number of IPaddresses in metatrafficMulticastIPAddressList

metatrafficUnicastPort
UDP port used for metatraffic communication

userdataUnicastPort
UDP port used for metatraffic communication

vendorId
identifies the vendor of the middleware implementing the RTPS protocol and allows
this vendor to add specific extensions to the protocol

protocolVersion
describes the protocol version

struct ORTEPubInfo

Name
struct ORTEPubInfo — information about publication

Synopsis

struct ORTEPubInfo {
const char * topic;
const char * type;
ObjectId objectId;

};

OCERA. IST 35102 9

Chapter 1. OCERA Real-Time Ethernet

Members
topic

the name of the information in the Network that is published or subscribed to
type

the name of the type of this data
objectId

object providing this publication

struct ORTESubInfo

Name
struct ORTESubInfo — information about subscription

Synopsis

struct ORTESubInfo {
const char * topic;
const char * type;
ObjectId objectId;

};

Members
topic

the name of the information in the Network that is published or subscribed to
type

the name of the type of this data
objectId

object with this subscription

struct ORTEPublStatus

Name
struct ORTEPublStatus — status of a publication

Synopsis

struct ORTEPublStatus {
unsigned int strict;
unsigned int bestEffort;
unsigned int issues;

};

Members
strict

count of unreliable subscription (strict) connected on responsible subscription
bestEffort

count of reliable subscription (best effort) connected on responsible subscription

OCERA. IST 35102 10

Chapter 1. OCERA Real-Time Ethernet

issues
number of messages in transmitting queue

struct ORTESubsStatus

Name
struct ORTESubsStatus — status of a subscription

Synopsis

struct ORTESubsStatus {
unsigned int strict;
unsigned int bestEffort;
unsigned int issues;

};

Members
strict

count of unreliable publications (strict) connected to responsible subscription
bestEffort

count of reliable publications (best effort) connected to responsible subscription
issues

number of messages in receiving queue

struct ORTERecvInfo

Name
struct ORTERecvInfo — description of received data

Synopsis

struct ORTERecvInfo {
ORTERecvStatus status;
const char * topic;
const char * type;
GUID_RTPS senderGUID;
NtpTime localTimeReceived;
NtpTime remoteTimePublished;
SequenceNumber sn;

};

Members
status

status of this event
topic

the name of the information
type

the name of the type of this data
senderGUID

GUID of object who sent this information

OCERA. IST 35102 11

Chapter 1. OCERA Real-Time Ethernet

localTimeReceived
local timestamp when data were received

remoteTimePublished
remote timestam when data were published

sn
sequencial number of data

struct ORTESendInfo

Name
struct ORTESendInfo — description of sending data

Synopsis

struct ORTESendInfo {
ORTESendStatus status;
const char * topic;
const char * type;
GUID_RTPS senderGUID;
SequenceNumber sn;

};

Members
status

status of this event
topic

the name of the information
type

the name of the type of this information
senderGUID

GUID of object who sent this information
sn

sequencial number of information

struct ORTEDomainAppEvents

Name
struct ORTEDomainAppEvents — Domain event handlers of an application

Synopsis

struct ORTEDomainAppEvents {
ORTEOnMgrNew onMgrNew;
void * onMgrNewParam;
ORTEOnMgrDelete onMgrDelete;
void * onMgrDeleteParam;
ORTEOnAppRemoteNew onAppRemoteNew;
void * onAppRemoteNewParam;
ORTEOnAppDelete onAppDelete;
void * onAppDeleteParam;
ORTEOnPubRemote onPubRemoteNew;
void * onPubRemoteNewParam;
ORTEOnPubRemote onPubRemoteChanged;

OCERA. IST 35102 12

Chapter 1. OCERA Real-Time Ethernet

void * onPubRemoteChangedParam;
ORTEOnPubDelete onPubDelete;
void * onPubDeleteParam;
ORTEOnSubRemote onSubRemoteNew;
void * onSubRemoteNewParam;
ORTEOnSubRemote onSubRemoteChanged;
void * onSubRemoteChangedParam;
ORTEOnSubDelete onSubDelete;
void * onSubDeleteParam;

};

Members
onMgrNew

new manager has been created
onMgrNewParam

user parameters for onMgrNew handler
onMgrDelete

manager has been deleted
onMgrDeleteParam

user parameters for onMgrDelete handler
onAppRemoteNew

new remote application has been registered
onAppRemoteNewParam

user parameters for onAppRemoteNew handler
onAppDelete

an application has been removed
onAppDeleteParam

user parameters for onAppDelete handler
onPubRemoteNew

new remote publication has been registered
onPubRemoteNewParam

user parameters for onPubRemoteNew handler
onPubRemoteChanged

a remote publication’s parameters has been changed
onPubRemoteChangedParam

user parameters for onPubRemoteChanged handler
onPubDelete

a publication has been deleted
onPubDeleteParam

user parameters for onPubDelete handler
onSubRemoteNew

a new remote subscription has been registered
onSubRemoteNewParam

user parameters for onSubRemoteNew handler
onSubRemoteChanged

a remote subscription’s parameters has been changed
onSubRemoteChangedParam

user parameters for onSubRemoteChanged handler
onSubDelete

a publication has been deleted
onSubDeleteParam

user parameters for onSubDelete handler

OCERA. IST 35102 13

Chapter 1. OCERA Real-Time Ethernet

Description
Prototypes of events handler fucntions can be found in file typedefs_api.h.

struct ORTETasksProp

Name
struct ORTETasksProp — ORTE task properties, not supported

Synopsis

struct ORTETasksProp {
Boolean realTimeEnabled;
int smtStackSize;
int smtPriority;
int rmtStackSize;
int rmtPriority;

};

Members
realTimeEnabled

not supported
smtStackSize

not supported
smtPriority

not supported
rmtStackSize

not supported
rmtPriority

not supported

struct ORTEDomainProp

Name
struct ORTEDomainProp — domain properties

Synopsis

struct ORTEDomainProp {
ORTETasksProp tasksProp;
ORTEIFProp * IFProp;
//interface propertiesunsigned char IFCount;
//count of interfacesORTEDomainBaseProp baseProp;
ORTEDomainWireProp wireProp;
ORTEMulticastProp multicast;
//multicast properiesORTEPublProp publPropDefault;
//default properties for a Publ/SubORTESubsProp subsPropDefault;
char * mgrs;
//managerschar * keys;
//keysIPAddress appLocalManager;
//applicationschar * version;
//string product versionint recvBuffSize;
int sendBuffSize;

};

OCERA. IST 35102 14

Chapter 1. OCERA Real-Time Ethernet

Members
tasksProp

task properties
IFProp

properties of network interfaces
IFCount

number of network interfaces
baseProp

base properties (see ORTEDomainBaseProp for details)
wireProp

wire properties (see ORTEDomainWireProp for details)
multicast

multicast properties (see ORTEMulticastProp for details)
publPropDefault

default properties of publiciations (see ORTEPublProp for details)
subsPropDefault

default properties of subscriptions (see ORTESubsProp for details)
mgrs

list of known managers
keys

access keys for managers
appLocalManager

IP address of local manager (default localhost)
version

string product version
recvBuffSize

receiving queue length
sendBuffSize

transmitting queue length

1.1.3.2. Functions

IPAddressToString

Name
IPAddressToString — converts IP address IPAddress to its string representation

Synopsis
char* IPAddressToString (IPAddress ipAddress , char * buff);

Arguments
ipAddress

source IP address
buff

output buffer

OCERA. IST 35102 15

Chapter 1. OCERA Real-Time Ethernet

StringToIPAddress

Name
StringToIPAddress — converts IP address from string into IPAddress

Synopsis
IPAddress StringToIPAddress (const char * string);

Arguments
string

source string

NtpTimeToStringMs

Name
NtpTimeToStringMs — converts NtpTime to its text representation in miliseconds

Synopsis
char * NtpTimeToStringMs (NtpTime time , char * buff);

Arguments
time

time given in NtpTime structure
buff

output buffer

NtpTimeToStringUs

Name
NtpTimeToStringUs — converts NtpTime to its text representation in microseconds

Synopsis
char * NtpTimeToStringUs (NtpTime time , char * buff);

Arguments
time

time given in NtpTime structure
buff

output buffer

OCERA. IST 35102 16

Chapter 1. OCERA Real-Time Ethernet

ORTEDomainStart

Name
ORTEDomainStart — start specific threads

Synopsis
void ORTEDomainStart (ORTEDomain * d , Boolean recvMetatrafficThread , Boolean recvUserDataThread ,
Boolean sendThread);

Arguments
d

domain object handle
recvMetatrafficThread

specifies whether recvMetatrafficThread should be started (ORTE_TRUE) or re-
main suspended (ORTE_FALSE).

recvUserDataThread

specifies whether recvUserDataThread should be started (ORTE_TRUE) or remain
suspended (ORTE_FALSE).

sendThread

specifies whether sendThread should be started (ORTE_TRUE) or remain sus-
pended (ORTE_FALSE).

Description
Functions ORTEDomainAppCreate and ORTEDomainMgrCreate provide facility to cre-
ate an object with its threads suspended. Use function ORTEDomainStart to resume
those suspended threads.

ORTEDomainPropDefaultGet

Name
ORTEDomainPropDefaultGet — returns default properties of a domain

Synopsis
Boolean ORTEDomainPropDefaultGet (ORTEDomainProp * prop);

Arguments
prop

pointer to struct ORTEDomainProp

Description
Structure ORTEDomainProp referenced by prop will be filled by its default values. Re-
turns ORTE_TRUE if successful or ORTE_FALSE in case of any error.

OCERA. IST 35102 17

Chapter 1. OCERA Real-Time Ethernet

ORTEDomainInitEvents

Name
ORTEDomainInitEvents — initializes list of events

Synopsis
Boolean ORTEDomainInitEvents (ORTEDomainAppEvents * events);

Arguments
events

pointer to struct ORTEDomainAppEvents

Description
Initializes structure pointed by events . Every member is set to NULL. Returns ORTE_TRUE
if successful or ORTE_FALSE in case of any error.

ORTEDomainAppCreate

Name
ORTEDomainAppCreate — creates an application object within given domain

Synopsis
ORTEDomain * ORTEDomainAppCreate (int domain , ORTEDomainProp * prop , ORTEDomainAppEvents * events ,
Boolean suspended);

Arguments
domain

given domain
prop

properties of application
events

events associated with application or NULL
suspended

specifies whether threads of this application should be started as well (ORTE_FALSE)
or stay suspended (ORTE_TRUE). See ORTEDomainStart for details how to re-
sume suspended threads

Description
Creates new Application object and sets its properties and events. Return handle to
created object or NULL in case of any error.

OCERA. IST 35102 18

Chapter 1. OCERA Real-Time Ethernet

ORTEDomainAppDestroy

Name
ORTEDomainAppDestroy — destroy Application object

Synopsis
Boolean ORTEDomainAppDestroy (ORTEDomain * d);

Arguments
d

domain

Description
Destroys all application objects in specified domain. Returns ORTE_TRUE or ORTE_FALSE
in case of any error.

ORTEDomainAppSubscriptionPatternAdd

Name
ORTEDomainAppSubscriptionPatternAdd — create pattern-based subscription

Synopsis
Boolean ORTEDomainAppSubscriptionPatternAdd (ORTEDomain * d , const char * topic , const char * type ,
ORTESubscriptionPatternCallBack subscriptionCallBack , void * param);

Arguments
d

domain object
topic

pattern for topic
type

pattern for type
subscriptionCallBack

pointer to callback function which will be called whenever any data are received
through this subscription

param

user params for callback function

Description
This function is intended to be used in application interesded in more published data
from possibly more remote applications, which should be received through single sub-
scription. These different publications are specified by pattern given to topic and type
parameters.
For example suppose there are publications of topics like temperatureEngine1 , temperatureEngine2 ,
temperatureEngine1Backup and temperatureEngine2Backup somewhere on our

OCERA. IST 35102 19

Chapter 1. OCERA Real-Time Ethernet

network. We can subscribe to each of Engine1 temperations by creating single subscrip-
tion with pattern for topic set to “temperatureEngine1*”. Or, if we are interested only in
values from backup measurements, we can use pattern “*Backup”.
Syntax for patterns is the same as syntax for fnmatch function, which is employed for
pattern recognition.
Returns ORTE_TRUE if successful or ORTE_FALSE in case of any error.

ORTEDomainAppSubscriptionPatternRemove

Name
ORTEDomainAppSubscriptionPatternRemove — remove subscription pattern

Synopsis
Boolean ORTEDomainAppSubscriptionPatternRemove (ORTEDomain * d , const char * topic , const char
* type);

Arguments
d

domain handle
topic

pattern to be removed
type

pattern to be removed

Description
Removes subscritions created by ORTEDomainAppSubscriptionPatternAdd . Patterns
for type and topic must be exactly the same strings as when ORTEDomainAppSubscriptionPatternAdd
function was called.
Returns ORTE_TRUE if successful or ORTE_FALSE if none matching record was found

ORTEDomainAppSubscriptionPatternDestroy

Name
ORTEDomainAppSubscriptionPatternDestroy — destroys all subscription
patterns

Synopsis
Boolean ORTEDomainAppSubscriptionPatternDestroy (ORTEDomain * d);

Arguments
d

domain handle

OCERA. IST 35102 20

Chapter 1. OCERA Real-Time Ethernet

Description
Destroys all subscription patterns which were specified previously by ORTEDomainAppSubscriptionPatternAdd
function.
Returns ORTE_TRUE if successful or ORTE_FALSE in case of any error.

ORTEDomainMgrCreate

Name
ORTEDomainMgrCreate — create manager object in given domain

Synopsis
ORTEDomain * ORTEDomainMgrCreate (int domain , ORTEDomainProp * prop , ORTEDomainAppEvents * events ,
Boolean suspended);

Arguments
domain

-- undescribed --
prop

desired manager’s properties
events

manager’s event handlers or NULL
suspended

specifies whether threads of this manager should be started as well (ORTE_FALSE)
or stay suspended (ORTE_TRUE). See ORTEDomainStart for details how to re-
sume suspended threads

Description
Creates new manager object and sets its properties and events. Return handle to created
object or NULL in case of any error.

ORTEDomainMgrDestroy

Name
ORTEDomainMgrDestroy — destroy manager object

Synopsis
Boolean ORTEDomainMgrDestroy (ORTEDomain * d);

Arguments
d

manager object to be destroyed

OCERA. IST 35102 21

Chapter 1. OCERA Real-Time Ethernet

Description
Returns ORTE_TRUE if successful or ORTE_FALSE in case of any error.

ORTEPublicationCreate

Name
ORTEPublicationCreate — creates new publication

Synopsis
ORTEPublication * ORTEPublicationCreate (ORTEDomain * d , const char * topic , const char * typeName ,
void * instance , NtpTime * persistence , int strength , ORTESendCallBack sendCallBack , void * sendCallBackParam ,
NtpTime * sendCallBackDelay);

Arguments
d

pointer to application object
topic

name of topic
typeName

data type description
instance

output buffer where application stores data for publication
persistence

persistence of publication
strength

strength of publication
sendCallBack

pointer to callback function
sendCallBackParam

user parameters for callback function
sendCallBackDelay

periode for timer which issues callback function

Description
Creates new publication object with specified parameters. The sendCallBack func-
tion is called periodically with sendCallBackDelay periode. In strict reliable mode
the sendCallBack function will be called only if there is enough room in transmitting
queue in order to prevent any data loss. The sendCallBack function should prepare
data to be published by this publication and place them into instance buffer.
Returns handle to publication object.

ORTEPublicationDestroy

Name
ORTEPublicationDestroy — removes a publication

OCERA. IST 35102 22

Chapter 1. OCERA Real-Time Ethernet

Synopsis
int ORTEPublicationDestroy (ORTEPublication * cstWriter);

Arguments
cstWriter

handle to publication to be removed

Description
Returns ORTE_OK if successful or ORTE_BAD_HANDLE if cstWriter is not valid
cstWriter handle.

ORTEPublicationPropertiesGet

Name
ORTEPublicationPropertiesGet — read properties of a publication

Synopsis
ORTEPublicationPropertiesGet (ORTEPublication * cstWriter , ORTEPublProp * pp);

Arguments
cstWriter

pointer to cstWriter object which provides this publication
pp

pointer to ORTEPublProp structure where values of publication’s properties will
be stored

Description
Returns ORTE_OK if successful or ORTE_BAD_HANDLE if cstWriter is not valid
cstWriter handle.

ORTEPublicationPropertiesSet

Name
ORTEPublicationPropertiesSet — set properties of a publication

Synopsis
int ORTEPublicationPropertiesSet (ORTEPublication * cstWriter , ORTEPublProp * pp);

Arguments
cstWriter

pointer to cstWriter object which provides this publication
pp

pointer to ORTEPublProp structure containing values of publication’s properties

OCERA. IST 35102 23

Chapter 1. OCERA Real-Time Ethernet

Description
Returns ORTE_OK if successful or ORTE_BAD_HANDLE if cstWriter is not valid
publication handle.

ORTEPublicationGetStatus

Name
ORTEPublicationGetStatus — removes a publication

Synopsis
int ORTEPublicationGetStatus (ORTEPublication * cstWriter , ORTEPublStatus * status);

Arguments
cstWriter

pointer to cstWriter object which provides this publication
status

pointer to ORTEPublStatus structure

Description
Returns ORTE_OK if successful or ORTE_BAD_HANDLE if happ is not valid publica-
tion handle.

ORTEPublicationSend

Name
ORTEPublicationSend — force publication object to issue new data

Synopsis
int ORTEPublicationSend (ORTEPublication * cstWriter);

Arguments
cstWriter

publication object

Description
Returns ORTE_OK if successful.

ORTESubscriptionCreate

Name
ORTESubscriptionCreate — adds a new subscription

OCERA. IST 35102 24

Chapter 1. OCERA Real-Time Ethernet

Synopsis
ORTESubscription * ORTESubscriptionCreate (ORTEDomain * d , SubscriptionMode mode, SubscriptionType
sType , const char * topic , const char * typeName , void * instance , NtpTime * deadline , NtpTime
* minimumSeparation , ORTERecvCallBack recvCallBack , void * recvCallBackParam);

Arguments
d

pointer to ORTEDomain object where this subscription will be created
mode

see enum SubscriptionMode
sType

see enum SubscriptionType
topic

name of topic
typeName

name of data type
instance

pointer to output buffer
deadline

deadline
minimumSeparation

minimum time interval between two publications sent by Publisher as requested
by Subscriber (strict - minumSep musi byt 0)

recvCallBack

callback function called when new Subscription has been received or if any change
of subscription’s status occures

recvCallBackParam

user parameters for recvCallBack

Description
Returns handle to Subscription object.

ORTESubscriptionDestroy

Name
ORTESubscriptionDestroy — removes a subscription

Synopsis
int ORTESubscriptionDestroy (ORTESubscription * cstReader);

Arguments
cstReader

handle to subscriotion to be removed

OCERA. IST 35102 25

Chapter 1. OCERA Real-Time Ethernet

Description
Returns ORTE_OK if successful or ORTE_BAD_HANDLE if cstReader is not valid
subscription handle.

ORTESubscriptionPropertiesGet

Name
ORTESubscriptionPropertiesGet — get properties of a subscription

Synopsis
int ORTESubscriptionPropertiesGet (ORTESubscription * cstReader , ORTESubsProp * sp);

Arguments
cstReader

handle to publication
sp

pointer to ORTESubsProp structure where properties of subscrition will be stored

ORTESubscriptionPropertiesSet

Name
ORTESubscriptionPropertiesSet — set properties of a subscription

Synopsis
int ORTESubscriptionPropertiesSet (ORTESubscription * cstReader , ORTESubsProp * sp);

Arguments
cstReader

handle to publication
sp

pointer to ORTESubsProp structure containing desired properties of the subscrip-
tion

Description
Returns ORTE_OK if successful or ORTE_BAD_HANDLE if cstReader is not valid
subscription handle.

ORTESubscriptionWaitForPublications

Name
ORTESubscriptionWaitForPublications — waits for given number of publications

OCERA. IST 35102 26

Chapter 1. OCERA Real-Time Ethernet

Synopsis
int ORTESubscriptionWaitForPublications (ORTESubscription * cstReader , NtpTime wait , unsigned int
retries , unsigned int noPublications);

Arguments
cstReader

handle to subscription
wait

time how long to wait
retries

number of retries if specified number of publications was not reached
noPublications

desired number of publications

Description
Returns ORTE_OK if successful or ORTE_BAD_HANDLE if cstReader is not valid
subscription handle or ORTE_TIMEOUT if number of retries has been exhausted..

ORTESubscriptionGetStatus

Name
ORTESubscriptionGetStatus — get status of a subscription

Synopsis
int ORTESubscriptionGetStatus (ORTESubscription * cstReader , ORTESubsStatus * status);

Arguments
cstReader

handle to subscription
status

pointer to ORTESubsStatus structure

Description
Returns ORTE_OK if successful or ORTE_BAD_HANDLE if cstReader is not valid
subscription handle.

ORTESubscriptionPull

Name
ORTESubscriptionPull — read data from receiving buffer

Synopsis
int ORTESubscriptionPull (ORTESubscription * cstReader);

OCERA. IST 35102 27

Chapter 1. OCERA Real-Time Ethernet

Arguments
cstReader

handle to subscription

Description
Returns ORTE_OK if successful or ORTE_BAD_HANDLE if cstReader is not valid
subscription handle.

ORTETypeRegisterAdd

Name
ORTETypeRegisterAdd — register new data type

Synopsis
int ORTETypeRegisterAdd (ORTEDomain * d , const char * typeName , ORTETypeSerialize ts , ORTETypeDeserialize
ds , unsigned int gms);

Arguments
d

domain object handle
typeName

name of data type
ts

pointer to serialization function. If NULL data will be copied without any process-
ing.

ds

deserialization function. If NULL data will be copied without any processing.
gms

maximum length of data (in bytes)

Description
Each data type has to be registered. Main purpose of this process is to define serial-
ization and deserialization functions for given data type. The same data type can be
registered several times, previous registrations of the same type will be overwritten.
Examples of serialization and deserialization functions can be found if contrib/shape/ortedemo_types.c
file.
Returns ORTE_OK if new data type has been succesfully registered.

ORTETypeRegisterDestroyAll

Name
ORTETypeRegisterDestroyAll — destroy all registered data types

OCERA. IST 35102 28

Chapter 1. OCERA Real-Time Ethernet

Synopsis
int ORTETypeRegisterDestroyAll (ORTEDomain * d);

Arguments
d

domain object handle

Description
Destroys all data types which were previously registered by function ORTETypeRegisterAdd .
Return ORTE_OK if all data types has been succesfully destroyed.

ORTEVerbositySetOptions

Name
ORTEVerbositySetOptions — set verbosity options

Synopsis
void ORTEVerbositySetOptions (const char * options);

Arguments
options

verbosity options

Description
There are 10 levels of verbosity ranging from 1 (lowest) to 10 (highest). It is possible to
specify certain level of verbosity for each module of ORTE library. List of all supported
modules can be found in linorte/usedSections.txt file. Every module has been aasigned
with a number as can be seen in usedSections.txt file.

For instance
options = “ALL,7” Verbosity will be set to level 7 for all modules.
options = “51,7:32,5” Modules 51 (RTPSCSTWrite.c) will use verbosity level 7 and mod-
ule 32 (ORTEPublicationTimer.c) will use verbosity level 5.
Maximum number of modules and verbosity levels can be changed in order to save
some memory space if small memory footprint is neccessary. These values are defined as
macros MAX_DEBUG_SECTIONS and MAX_DEBUG_LEVEL in file include /defines.h.
Return ORTE_OK if desired verbosity levels were successfuly set.

ORTEVerbositySetLogFile

Name
ORTEVerbositySetLogFile — set log file

OCERA. IST 35102 29

Chapter 1. OCERA Real-Time Ethernet

Synopsis
void ORTEVerbositySetLogFile (const char * logfile);

Arguments
logfile

log file name

Description
Sets output file where debug messages will be writen to. By default these messages are
written to stdout.

ORTEInit

Name
ORTEInit — initialization of ORTE layer (musi se zavolat)

Synopsis
void ORTEInit (void);

Arguments
void

no arguments

ORTEAppSendThread

Name
ORTEAppSendThread — resume sending thread in context of calling function.

Synopsis
void ORTEAppSendThread (ORTEDomain * d);

Arguments
d

domain object handle

Description
Sending thread will be resumed. This function never returns.

OCERA. IST 35102 30

Chapter 1. OCERA Real-Time Ethernet

ORTESleepMs

Name
ORTESleepMs — suspends calling thread for given time

Synopsis
void ORTESleepMs (unsigned int ms);

Arguments
ms

miliseconds to sleep

1.1.3.3. Macros

SeqNumberCmp

Name
SeqNumberCmp— comparison of two sequence numbers

Synopsis
SeqNumberCmp (sn1 , sn2);

Arguments
sn1

source sequential number 1
sn2

source sequential number 2

Return
1 if sn1 > sn2 -1 if sn1 < sn2 0 if sn1 = sn2

SeqNumberInc

Name
SeqNumberInc — incrementation of a sequence number

Synopsis
SeqNumberInc (res , sn);

Arguments
res

result

OCERA. IST 35102 31

Chapter 1. OCERA Real-Time Ethernet

sn

sequential number to be incremented

Description
res = sn + 1

SeqNumberAdd

Name
SeqNumberAdd — addition of two sequential numbers

Synopsis
SeqNumberAdd (res , sn1 , sn2);

Arguments
res

result
sn1

source sequential number 1
sn2

source sequential number 2

Description
res = sn1 + sn2

SeqNumberDec

Name
SeqNumberDec — decrementation of a sequence number

Synopsis
SeqNumberDec (res , sn);

Arguments
res

result
sn

sequential number to be decremented

Description
res = sn - 1

OCERA. IST 35102 32

Chapter 1. OCERA Real-Time Ethernet

SeqNumberSub

Name
SeqNumberSub — substraction of two sequential numbers

Synopsis
SeqNumberSub (res , sn1 , sn2);

Arguments
res

result
sn1

source sequential number 1
sn2

source sequential number 2

Description
res = sn1 - sn2

NtpTimeCmp

Name
NtpTimeCmp — comparation of two NtpTimes

Synopsis
NtpTimeCmp (time1 , time2);

Arguments
time1

source time 1
time2

source time 2

Return value
1 if time 1 > time 2 -1 if time 1 < time 2 0 if time 1 = time 2

NtpTimeAdd

Name
NtpTimeAdd — addition of two NtpTimes

OCERA. IST 35102 33

Chapter 1. OCERA Real-Time Ethernet

Synopsis
NtpTimeAdd (res , time1 , time2);

Arguments
res

result
time1

source time 1
time2

source time 2

Description
res = time1 + time2

NtpTimeSub

Name
NtpTimeSub — substraction of two NtpTimes

Synopsis
NtpTimeSub (res , time1 , time2);

Arguments
res

result
time1

source time 1
time2

source time 2

Description
res = time1 - time2

NtpTimeAssembFromMs

Name
NtpTimeAssembFromMs — converts seconds and miliseconds to NtpTime

Synopsis
NtpTimeAssembFromMs (time , s , msec);

OCERA. IST 35102 34

Chapter 1. OCERA Real-Time Ethernet

Arguments
time

time given in NtpTime structure
s

seconds portion of given time
msec

miliseconds portion of given time

NtpTimeDisAssembToMs

Name
NtpTimeDisAssembToMs — converts NtpTime to seconds and miliseconds

Synopsis
NtpTimeDisAssembToMs (s , msec, time);

Arguments
s

seconds portion of given time
msec

miliseconds portion of given time
time

time given in NtpTime structure

NtpTimeAssembFromUs

Name
NtpTimeAssembFromUs — converts seconds and useconds to NtpTime

Synopsis
NtpTimeAssembFromUs (time , s , usec);

Arguments
time

time given in NtpTime structure
s

seconds portion of given time
usec

microseconds portion of given time

OCERA. IST 35102 35

Chapter 1. OCERA Real-Time Ethernet

NtpTimeDisAssembToUs

Name
NtpTimeDisAssembToUs — converts NtpTime to seconds and useconds

Synopsis
NtpTimeDisAssembToUs (s , usec , time);

Arguments
s

seconds portion of given time
usec

microseconds portion of given time
time

time given in NtpTime structure

Domain2Port

Name
Domain2Port — converts Domain value to IP Port value

Synopsis
Domain2Port (d , p);

Arguments
d

domain
p

port

Domain2PortMulticastUserdata

Name
Domain2PortMulticastUserdata — converts Domain value to userdata IP Port
value

Synopsis
Domain2PortMulticastUserdata (d , p);

Arguments
d

domain

OCERA. IST 35102 36

Chapter 1. OCERA Real-Time Ethernet

p

port

Domain2PortMulticastMetatraffic

Name
Domain2PortMulticastMetatraffic — converts Domain value to metatraffic IP
Port value

Synopsis
Domain2PortMulticastMetatraffic (d , p);

Arguments
d

domain
p

port

1.1.4. Implementation issues
The RTPS protocol is implemented as a set of objects. Objects are of the following types:

Manager (M): Special object that facilitates the automatic discovery of other Managers.
There is one Manager on each participating network node.
ManagedApplication (MA): An applciation that is managed by one or more Managers.
Writers (Publication, CSTWriter): provide locally available data (a composit state or
stream of issues) on the network.
Readers (Subscription, CSTReader): obtain information provided by Writers.
The Manager is an independent process, which is created during application startup. It
is a special Application that helps applications to automatically discover each other on
the Network. Every Manager keeps track of its managees and their attributes. To pro-
vide this information on the Network, every Manager has the special CSTWriter writer-
Applications. The Composite State (CS) provided by the CSTWriter writerApplications
are the attributes of all the ManagedApplications the Manager manages (its managees).
Whenever the Manager accepts a new ManagedApplication as its managee, whenever
the Manager loses a ManagedApplication as a managee or whenever an attribute of a
managee changes, the CS of the writerApplications changes. Each such change creates
new instance of CSChange which has to be transferred to all network objects (Managers
and ManagedApplications) by means of CST protocol.
The Publication is used to publish issues to matching Subscription. The CSTWriter and
CSTReader are the equivalent of the Publication and Subscription, respectively, but are
used solely for the state-synchronization protocol.
The manager is composed from five kinds of objects:

WriterApplicationSelf: CSTWriter throught which the Manager provides information
about its own parameters to Managers on other nodes.
ReaderManagers: CSTReader through which the Manager obtains information on the
state of all other Managers on the Network.
WriterManagers: CSTWriter throught which the Manager will send the state of all
Managers in the Network to all its managees.

OCERA. IST 35102 37

Chapter 1. OCERA Real-Time Ethernet

ReaderApplications: CSTReader which is used for the registration of local and remote
managedApplications.
WriterApplications: CSTWriter throught which the Manager will send information
about its managees to other Managers in the Network.
A ManagedApplication is an Application that is managed by one or more Managers. Ev-
ery ManagedApplication is managed by at least one Manager. TheManagedApplication
has a special CSTWriter writerApplicationSelf. The Composite State of the ManagedAp-
plication’s writerApplicationSelf object contains only one NetworkObject - the applica-
tion itself. The writerApplicationSelf of the ManagedApplication must be configured to
announce its presence repeatedly and does not request nor expect acknowledgements.
A Manager that discovers a new ManagedApplication through its readerApplications
must decide whether it must manage this ManagedApplication or not. For this purpose,
the attribute managerKeyList of the Application is used. If one of the ManagedAppli-
cation’s keys (in the attribute managerKeyList) is equal to one of the Manager’s keys,
the Manager accepts the Application as a managee. If none of the keys are equal, the
managed application is ignored. At the end of this process all Managers have discovered
their managees and the ManagedApplications know all Managers in the Network.
The ManagedApplications now use the CST Protocol between the writerApplications
of the Managers and the readerApplications of the ManagedApplications in order to
discover other ManagedApplications in the Network. Every ManagedApplication has
two special CSTWriters, writerPublications and writerSubscriptions, and two special
CSTReaders, readerPublications and readerSubscriptions.
Once ManagedApplications have discovered each other, they use the standard CST pro-
tocol through these special CSTReaders and CSTWriter to transfer the attributes of all
Publications and Subscriptions in the Network. The managedApplication is composed
from seven kinds of objects.

WriterApplicationSelf: a CSTWriter throught which the ManagedApplication regis-
ters itself with the local Manager.
ReaderApplications: a CSTReader throught which the ManagedApplication receives
information about another ManagedApplications in the network.
ReaderManagers: a CSTReader throught which the ManagedApplication receives in-
formation about Managers.
WriterPublications: a Writer that provides issues to one or more instances of a Sub-
scription using the publish-subscribe protocol and semantics.
ReaderPublications: a Reader throught which the Publication receives information
about Subscriptions.
WriterSubscriptions: a Writer that provides information about Subscription to Publi-
cations.
ReaderSubscriptions: a Reader that receives issues from one or more instances of
Publication, using the publish-subscribe service.
Following example shows communication between two nodes (N1, N2). There are two
applications running on each node - MA1.1, MA1.2 on node N1 and MA2.1, MA2.2 on
node N2. Each node has it own manager (M1, M2).

1. MA1.1 introduces itself to local manager M1
2. M1 sends list of remote managers Mx and other local applications MA1.x
3. MA1.1 is introduced to all Mx by M1
4. All remote MAs are reported now to M1.1
5. Local MAs are queried for their CS (composite state)
6. All local MAs are sending their CS
7. Remote MAs are queried for their CS
8. All remote MAs are sending their CS

OCERA. IST 35102 38

Chapter 1. OCERA Real-Time Ethernet

The corresponding publishers and subscribers with matching Topic and Type are con-
nected and starts their data communication

M A 1 ,2
p ub
sub

M A 2 ,1
p ub
sub

pu b
sub

M A 1 ,1
M A 2,2

pu b
sub

M ana ger M 1
O RTE /RT I

M anager M 2
O RT E /RTI

N od e N 1
IP /U D P 7 40 0 IP /U D P 7 40 0

N od e N 2

1 2 7
8

5
6

3
4

0

Figure 1-1. Communication among network objects.

1.1.5. Tests
There were not any serious tests performed yet. Current version has been intensively
tested against reference implementation of the protocol. Results of these test indicate
that ORTE is fully interoperable with implementation provided by another vendor.

1.1.6. Examples
The skeleton of an ORTE application is very simple:

#include <orte_api.h>

ORTEDomain *d = NULL;
char instance2send[64];
int counter = 0;

int main(int argc, char *argv[])
{

ORTEInit();

d = ORTEDomainAppCreate(ORTE_DEFAUL_DOMAIN, NULL, NULL, ORTE_FALSE);
if (!d)
{

printf("ORTEDomainAppCreate failed\n");
return -1;

}
/*
.....
here is your application dependent code
.....
*/

OCERA. IST 35102 39

Chapter 1. OCERA Real-Time Ethernet

}

In order to exchange user data, the application must create the publications of its vari-
ables. Application which wants to receive an issues of published data must create a sub-
scription. Properties of publication and subscription contain specification of Topic and
TypeName, which specify an application variable within whole network. It is allowed
to have more publications of same Topic and TypeName. If it subscribes to such publi-
cation, it will receive issues from all publications of the same Topic and TypeName. An
publication will be created by calling function ORTEAppPublAdd. Once the publication
is created, it is are ready to publish data using function ORTEAppPublSend.

ORTEPublication *p;
NtpTime persistence, delay;

ORTETypeRegisterAdd(d, "HelloMsg", NULL, NULL, 64);
NTPTIME_BUILD(persistence, 3); /* this issue is valid for 3 seconds */
NTPTIME_DELAY(delay, 1); /* a callback function will be called every 1 second */
p = ORTEPublicationCreate(d,

"Example HelloMsg",
"HelloMsg",
&instance2Send,
&persistence,
1,
sendCallBack,
NULL,
&delay);

The callback function will be then called when new issue from publisher has to be sent.
void sendCallBack(const ORTESendInfo *info, void *vinstance, void *sendCallBackParam)
{

char *instance = (char *) vinstance;
switch (info->status)
{

case NEED_DATA:
printf("Sending publication, count %d\n", counter);
sprintf(instance, "Hello world (%d)", counter++);
break;

case CQL: //criticalQueueLevel has been reached
break;

}
}

Subscribing application needs to create a subscription with publication’s Topic and Type-
Name. A callback function will be then called when new issue from publisher will be
received.

ORTESubscription *s;
NtpTime deadline, minimumSeparation;

ORTETypeRegisterAdd(d, "HelloMsg", NULL, NULL, 64);
NTPTIME_BUILD(deadline, 20);
NTPTIME_DELAY(minimumSeparation, 0);
p = ORTESubscriptionCreate(d,

IMMEDIATE,
BEST_EFFORTS,
"Example HelloMsg",
"HelloMsg",
&instance2Recv,
&deadline,
&minimumSeparation,
recvCallBack,
NULL);

The callback function is shown in the following example:
void recvCallBack(const ORTERecvInfo *info, void *vinstance, void *recvCallBackParam)
{

OCERA. IST 35102 40

Chapter 1. OCERA Real-Time Ethernet

char *instance = (char *) vinstance;
switch (info->status)
{

case NEW_DATA:
printf("%s\n", instance);
break;

case DEADLINE: //deadline occurred
break;

}
}

There must be the Manager process running on each network node. This manager must
be started manualy before any other ORTE-enabled application. Manager process will
be created by program ORTEManager with following options:
-P, --peer IPAddress1:IPAddress2:...:IPAddressn
-p, --port port
-v, --verbosity level
-V, --version
-h, --help

Each manager has to know where are other managers in the network. Their IP ad-
dresses are therefore specified as IPAddressX parameters. All managers must use the
same port, the default port is 7400.
Example:
ORTEManager -P 147.32.86.167:147.32.86.186 -v 3
Now you are ready to run your ORTE enabled application.
There are following examples available:

HelloWorld: Very simple program demonstrating how to create an application which
will publish some data and another application, which will subscribe to this publication.
Ping: Similar to HelloWorld example, publication and subscription is in one source code.
Teletype: More complicated example demonstrating functionality of various settings
such as persistence, minimum separation etc.
Spy: Example demonstrating functionality for network analysis and debugging.
Reliable: Example demonstrating functionality reliable communication using ORTE.

1.1.7. Installation instructions
There are no any special steps in order to install ORTE package. Simply untar instala-
tion package into desired directory, enter this directory and issue following commands:
./configure
make
make install

1.2. Real Time Ethernet analyzer
Real Time Ethernet analyzer is a module which adds support for RTPS protocol into
Ethereal (http://www.ethereal.com) network analyzer.

1.2.1. Sumary
Name of the component

Real Time Ethernet analyzer
Author

Zdenek Sebek
Reviewer

not validated
Layer

High-level available

OCERA. IST 35102 41

Chapter 1. OCERA Real-Time Ethernet

Version
0.1 alfa

Status
Alfa

Dependencies
Ethereal source code.

Release date
N/A

1.2.2. Description
Real Time Ethernet analyzer is not standalone tool. It is the module which is compiled
into Ethereal network analyzer and adds support for RTPS protocol.

1.2.3. API / Compatibility
not applicable

1.2.4. Implementation issues
Internal structure is completly driven by requirements for Ethereal’s modules. It con-
sists of single function, which receives data as they were received from network, ana-
lyzes them according to RTPS data format description and vizualizes them by standard
Ethereal’s means.

1.2.5. Tests
The tests performed were focusing on evaluation of abilities to correctly parse whole
set of RTPS commands. There are no other real-time parameters to be tested, because
analyzis of received network frames is performed off-line and there are not any time
constraints.

1.2.6. Examples
The structure of a sample RTPS message is shown on the Ethereal’s window screenshot.

OCERA. IST 35102 42

Chapter 1. OCERA Real-Time Ethernet

Figure 1-2. Screenshot

1.2.7. Installation instructions
First you need download source code distibution of Ethereal network analyze from http://www.ethereal.com
and unpack it. Current implementation has been succesfully tested with Ethereal ver-
sion 0.9.6 and 0.9.7. Untar instalation package into directory containg Ethereal’s source.
Edit file Makefile.in . Find all occurences of string packet-rtsp (yes, rtsp, it is not a
typo) and add similar entries with string packet-rtps . Now you can compile Ethereal
analyzer by following commands:
./configure
make
make install

OCERA. IST 35102 43

Chapter 2. Linux/RT-Linux CAN Driver
(LinCAN)

The LINCAN is an implementation of the Linux device driver supporting more CAN
controller chips and many CAN interface boards. Its implementation has long history
already. The OCERA version of the driver adds new features, continuous enhancements
and reimplementation of structure of the driver. Most important feature is that driver
supports multiple open of one communication object from more Linux and even RT-
Linux applications and threads. The usage of the driver is tightly coupled to the virtual
CAN API interface component which hides driver low level interface to the application
programmers.

2.1. LinCAN Summary

2.1.1. Summary
Name of the component

Linux CAN Driver (LINCAN)
Author

Pavel Pisa
Arnaud Westenberg
Tomasz Motylewski

Maintainer
Pavel Pisa

LinCAN Internet resources
http://www.ocera.org OCERA project home page
http://sourceforge.net/projects/ocera OCERA SourceForge project page. The OCERA
CVS relative path to LinCAN driver sources is
ocera/components/comm/can/lincan .
http://cmp.felk.cvut.cz/~pisa/can local testing directory

Reviewer
The previous driver versions were tested by more users. The actual version has been
tested at CTU by more OCERA developers, by Unicontrols and by BFAD GmbH,
which use pre-OCERA and current version of the driver in their products.
List of the cards tested with latest version of the driver:
• PC104 Advantech PCM3680 dual channel board on 2.4 RT-Linux enabled kernel
• PiKRON ISA card on 2.4.and 2.6 Linux kernels
• BfaD DIMM PC card on 2.4 RT-Linux enabled kernel
• KVASER pcican-q on 2.6 Linux kernel and on 2.4 RT-Linux enabled kernel
• virtual board tested on all systems as well

Supported layers

• High-level available
Linux device interface available for soft real-time Linux only and for mixed-mode
RT-Linux/Linux driver compilation

• Low-level available

44

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

RT-Linux device is registered only for mixed-mode RT-Linux/Linux driver com-
pilation. The driver messages transmition and receiption runs in hard real-time
threads in such case.

Version
lincan-0.2

Status
Beta

Dependencies
The driver requires CAN interface hardware for access to real CAN bus.
Driver can be used even without hardware if a virtual board is configured. This
setup is useful for testing of interworking of other CAN components.
Linux kernels from 2.2.x, 2.4.x and 2.6.x series are fully supported.
The RT-Linux version 3.2 or OCERA RT-Linux enabled system is required for hard
real-time use.
The RT-Linux version requires RT-Linux malloc , which is part of OCERA RT-Linux
version and can be downloaded for older RT-Linux versions .
The use of VCA API library is suggested for seamless application transitions be-
tween driver kinds and versions.

Supported hardware (some not tested)

• Advantech PC-104 PCM3680 dual channel board
• PiKRON ISA card
• BfaD DIMM PC card
• KVASER PCIcan-Q, PCIcan-D, PCIcan-S
• KVASER PCcan-Q, PCcan-D, PCcan-S, PCcan-F
• MPL pip5 and pip6
• NSI PC-104 board CAN104
• Contemporary Controls PC-104 board CAN104
• Arcom Control Systems PC-104 board AIM104CAN
• IXXAT ISA board PC-I03
• SECO PC-104 board M436
• Board support template sources for yet unsupported hardware
• Virtual board

Release date
February 2004

2.2. LinCAN Driver Description

2.2.1. Introduction
The LinCAN driver is the loadable module for the Linux kernel which implements CAN
driver. The driver communicates and controls one or more CAN controllers chips. Each
chip/CAN interface is represented to the applications as one or more CAN message ob-
jects accessible as character devices. The application can open the character device and
use read /write system calls for CAN messages transmission or reception through the
connected message object. The parameters of the message object can be modified by the
IOCTL system call. The closing of the character device releases resources allocated by

OCERA. IST 35102 45

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

the application. The present version of the driver supports three most common CAN
controllers:

• Intel i82527 chips
• Philips 82c200 chips
• Philips SJA1000 chips in standard and PeliCAN mode
The intelligent CAN/CANopen cards should be supported by in the near future. One
of such cards is P-CAN series of cards produced by Unicontrols. The driver contains
support for more than ten CAN cards basic types with different combinations of the
above mentioned chips. Not all card types are held by OCERA members, but CTU has
and tested more SJA1000 type cards and will test some i82527 cards in near future.

2.3. LinCAN Driver System Level API

2.3.1. Device Files and Message Structure
Each driver is a subsystem which has no direct application level API. The operating
system is responsible for user space calls transformation into driver functions calls or
dispatch routines invocations. The CAN driver is implemented as a character device
with the standard device node names /dev/can0 , /dev/can1 , etc. The application pro-
gram communicates with the driver through the standard system low level input/output
primitives (open , close , read , write , select and ioctl). The CAN driver convention
of usage of these functions is described in the next subsection.
The read and write functions need to transfer one or more CAN messages. The struc-
ture canmsg_t is defined for this purpose and is defined in include file can/can.h . The
canmsg_t structure has next fields:

struct canmsg_t {
short flags;
int cob;
unsigned long id;
unsigned long timestamp;
unsigned int length;
unsigned char
data[CAN_MSG_LENGTH];

} PACKED;

flags
The flags field holds information about message type. The bit MSG_RTRmarks re-
mote transmission request messages. Writing of such message into the CAN mes-
sage object handle results in transmission of the RTR message. The RTR message
can be received by the read call if no buffer with corresponding ID is pre-filled in
the driver. The bit MSG_EXTindicates that the message with extended (bit 29 set)
ID will be send or was received. The bit MSG_OVRis intended for fast indication
of the reception message queue overfill. The transmitted messages could be dis-
tributed back to the local clients after transmition to the CAN bus. Such messages
are marked by MSG_LOCALbit.

cob
The field reserved for a holding message communication object number. It could
be used for serialization of received messages from more message object into one
message queue in the future.

id
CAN message ID.

timestamp
The field intended for storing of the message reception time.

OCERA. IST 35102 46

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

length
The number of the data bytes send or received in the CAN message. The number of
data load bytes is from 0 to 8.

data
The byte array holding message data.

As was mentioned above, direct communication with the driver through system calls
is not encouraged because this interface is partially system dependent and cannot be
ported to all environments. The suggested alternative is to use OCERA provided VCA
library which defines the portable and clean interface to the CAN driver implementa-
tion.
The other issue is addition of the support for new CAN interface boards and CAN con-
troller chips. The subsection Board Support Functions describes template functions,
which needs to be implemented for newly supported board. The template of board sup-
port can be found in the file src/template.c .
The other task for more brave souls is addition of the support for the unsupported chip
type. The source supporting the SJA1000 chip in the PeliCAN mode can serve as an
example. The full source of this chip support is stored in the file src/sja1000p.c . The
subsection Chip Support Functions describes basic functions necessary for the new chip
support.

2.3.2. CAN Driver File Operations

open

Name
open — message communication object open system call

Synopsis
int open (const char * pathname , int flags);

Arguments
pathname

The path to driver device node is specified there. The conventional device names for
Linux CAN driver are /dev/can0 , /dev/can1 , etc.

flags

flags modifying style of open call. The standard O_RDWRmode should be used for
CAN device. The mode O_NOBLOCKcan be used with driver as well. This mode re-
sults in immediate return of read and write .

Description
Returns negative number in the case of error. Returns the file descriptor for named CAN
message object in other cases.

close

Name
close — message communication object close system call

OCERA. IST 35102 47

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

Synopsis
int close (int fd);

Arguments
fd

file descriptor to opened can message communication object

Description
Returns negative number in the case of error.

read

Name
read — reads received CAN messages from message object

Synopsis
ssize_t read (int fd , void * buf , size_t count);

Arguments
fd

file descriptor to opened can message communication object
buf

pointer to array of canmsg_t structures.
count

size of message array buffer in number of bytes

Description
Returns negative value in the case of error else returns number of read bytes which is
multiple of canmsg_t structure size.

write

Name
write — writes CAN messages to message object for transmission

Synopsis
ssize_t write (int fd , const void * buf , size_t count);

Arguments
fd

file descriptor to opened can message communication object
buf

pointer to array of canmsg_t structures.

OCERA. IST 35102 48

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

count

size of message array buffer in number of bytes. The parameter informs driver about
number of messages prepared for transmission and should be multiple of canmsg_t
structure size.

Description
Returns negative value in the case of error else returns number of bytes successfully
stored into message object transmission queue. The positive returned number is multi-
ple of canmsg_t structure size.

struct canfilt_t

Name
struct canfilt_t — structure for acceptance filter setup

Synopsis

struct canfilt_t {
int flags;
int queid;
int cob;
unsigned long id;
unsigned long mask;

};

Members
flags

message flags
MSG_RTR.. message is Remote Transmission Request,
MSG_EXT.. message with extended ID,
MSG_OVR.. indication of queue overflow condition,
MSG_LOCAL.. message originates from this node.
there are corresponding mask bits MSG_RTR_MASK, MSG_EXT_MASK, MSG_LOCAL_MASK.
MSG_PROCESSLOCALenables local messages processing in the combination with
global setting

queid
CAN queue identification in the case of the multiple queues per one user (open

instance)
cob

communication object number (not used)
id

selected required value of cared ID id bits
mask

select bits significant for the comparison;
1 .. take care about corresponding ID bit,
0 .. don’t care

OCERA. IST 35102 49

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

IOCTL CANQUE_FILTER

Name
IOCTL CANQUE_FILTER— Sets acceptance filter for CAN queue connected to client
state

Synopsis
int ioctl (int fd , int command = CANQUE_FILTER, struct canfilt_t * filt);

Arguments
fd

file descriptor to opened can message communication object
command

Denotes CAN queue filter command, CANQUE_FILTER

filt

pointer to the canfilt_t structure.

Description
The CANQUE_FILTERIOCTL invocation sets acceptance mask of associated canqueue to
specified parameters. Actual version of the driver changes filter of the default receiption
queue. The filed queid should be initialized to zero to support compatibility with future
driver versions.
The call returns negative value in the case of error.

IOCTL CANQUE_FLUSH

Name
IOCTL CANQUE_FLUSH— Flushes messages from receiption CAN queue

Synopsis
int ioctl (int fd , int command = CANQUE_FLUSH, int queid);

Arguments
fd

file descriptor to opened can message communication object
command

Denotes CAN queue flush command, CANQUE_FLUSH

queid

Should be initialized to zero to support compatibility with future driver versions

Description
The call flushes all messages from the CAN queue.
The call returns negative value in the case of error.

OCERA. IST 35102 50

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

2.4. LinCAN Driver Architecture
The LinCAN provides simultaneous queued communication for more concurrent run-
ning applications.

Testclient

CanMonitor #1

CanMonitor #2

CanDev1

VCA lib

CanDev1

VCA lib

Canmond

VCA lib

CAN driver

controller
CAN

or virtual

IO or MEM

EDS

VCA API

File ops (rd, wr, ioctl)

TCP/IP

parser

parser or
compiler

Figure 2-1. LinCAN architecture
Even each of communication object can be used by one or more applications, which

connects to the communication object internal representation by means of CAN FIFO
queues. This enables to build complex systems based even on card and chips, which
provides only one communication objects (for example SJA1000).
The driver can be configured to provide virtual CAN board (software emulated message
object) to test CAN components on the Linux system without hardware required to con-
nect to the real CAN bus. The example configuration of the CAN network components
connected to one real or virtual communication object of LinCAN driver is shown in
figure Figure 2-1. The communication object is used by the CAN monitor daemon and
two CANopen devices implemented by OCERA CanDev component. The actual system
dependent driver API is hidden to applications under VCA library. The CAN monitor
daemon translates CAN messages to TCP/IP network for Java based platform indepen-
dent CAN monitor and C based test client.
Each communication object is represented as character device file. The devices can be
opened and closed by applications in blocking or non-blocking mode. LinCAN client ap-
plication state, chip and object configurations are controlled by IOCTL system call. One
or more CAN messages can be sent or received through write/read system calls. The
data read from or written to the driver are formed from sequence of fixed size structures
representing CAN messages.

struct canmsg_t {
short flags;
int cob;
unsigned long id;
unsigned long timestamp;
unsigned int length;
unsigned char data[CAN_MSG_LENGTH];

};

The LinCAN driver version 0.2 has rewritten infrastructure based on message FIFOs or-
ganized into oriented edges between chip drivers (structure chip_t) message objects
representations (structure msgobj_t) and open device file instances state (structure
canuser_t). The complete relationship between CAN hardware representation and
open instances is illustrated in the figure Figure 2-4.
The message FIFO (structure canque_fifo_t) initialization code allocates config-
urable number of slots capable to hold one message.

OCERA. IST 35102 51

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

canqueue_fifo_t
flags
error_code
*head
**tail
*flist
*entry

Figure 2-2. LinCAN message FIFO implementation
The all slots are linked to the free list after initialization. The slot can be requested by

FIFO input side by function canque_fifo_get_inslot . The slot is filled by message
data and is linked into FIFO queue by function canque_fifo_put_inslot . If previ-
ously requested slot is not successfully filled by data, it can be released by canque_fifo_abort_inslot .
The output side of the FIFO tests presence of ready slots by function canque_fifo_test_outslot .
If the slot is returned by this function, it is processed and released by function canque_fifo_free_outslot .
The processing can be postponed in the case of bus error or higher priority message pro-
cessing request by canque_fifo_again_outslot function. All these functions are op-
timized to be fast and short, which enables to synchronize them by spin-lock semaphores
and guarantee atomic nature of them. The FIFO implementation is illustrated in the fig-
ure Figure 2-2.

ends

idle
inlist

active[]

App/User1

controller
CAN

or virtual

ends

idle
inlist

active[]

App/User2

ends

idle
inlist

active[]

Msg object

edges
with

FOFOs

Figure 2-3. LinCAN driver message flow graph edges

The low level message FIFOs are wrapped by CAN edges structures (canque_edge_t),
which are used for message passing between all components of the driver. The actual ver-
sion of LinCAN driver uses oriented edges to connect Linux and RT-Linux clients/users
with chips and communication objects. Each entity, which is able to hold edge ends,
has to be equipped by canque_ends_t structure. The input ends of edges/FIFOs are
held on inlist . The inactive/empty out ends of the edges are held on a idle list
and active out ends are held on a active list corresponding to the edge priority. The
canque_fifo_test_outslot function can determine by examination of active lists
if there is message to accept/process. This concept makes possible to use same type
of edges for outgoing and incoming directions. The concept of edges can be even used
for message filtering by priority or acceptance masks. It is prepared for future target-
ing messages to predefined message objects according to their priority or type and for
redundant and fault tolerant message distribution into more CAN buses. Message con-
centration, virtual nodes and other special processing can be implemented above this
concept as well. The example of interconnection of one communication object with two
users/open instances is illustrated in the picture Figure 2-3. Three edges/FIFOs are in
the active state and one edge/FIFO is empty in the shown example.

OCERA. IST 35102 52

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

chip_t

candevice_t

canhardware_t

chip_t

candevice_t

chip_t

msgobj_t

canuser_t

qends

qends

msgobj_t

canuser_t

qends

qends

msgobj_t

canuser_t

qends

qends

msgobj_t

canuser_t

qends

qends

msgobj_t

canuser_t

qends

qends

minor[]

Figure 2-4. CAN hardware model in the LinCAN driver

The figure Figure 2-4 is example of object inside LinCAN driver representing system
with two boards, three chips and more communication objects. Some of these objects
are used by one or more applications. The object open instances are represented as
canuser_t structures.

2.5. Driver History and Implementation Issues
The development of the CAN drivers for Linux has long history. We have been faced
before two basic alternatives, start new project from scratch or use some other project
as basis of our development. The first approach could lead faster to more simple and
clean internal architecture but it would mean to introduce new driver with probably
incompatible interface unusable for already existing applications. The support of many
types of cards is thing which takes long time as well. More existing projects aimed to
development of a Linux CAN driver has been analyzed:

Original LDDK CAN driver project
The driver project aborted on the kernel evolution and LDDK concept. The LDDK
tried to prepare infrastructure for development of the kernel version independent
character device drivers written in meta code. The goal was top-ranking, but it
proves, that well written "C" language driver can be more portable than the LDDK
complex infrastructure.

can4linux-0.9 by PORT GmbH
This is version of the above LDDK driver maintained by Port GmbH. The card type
is hard compiled into the driver by selected defines and only Philips 82c200 chips
are supported.

CanFestival
The big advantage of this driver is an integrated support for the RT-Linux, but
driver implementation is highly coupled to one card. Some concepts of the driver
are interesting but the driver has the hard-coded number of message queues.

can-0.7.1 by Arnaud Westenberg
This driver has its roots in the LDDK project as well. The original LDDK concept
has been eliminated in the driver source and necessary adaptation of the driver
for the different Linux kernel versions is achieved by the controllable number of
defines and conditional compilation. There is more independent contributors. The
main advantages of the driver are support of many cards working in parallel, IO
and memory space chip connection support and more cards of different types can
be selected at module load time. There exist more users and applications compat-
ible with the driver interface. Disadvantages of the original version of this driver

OCERA. IST 35102 53

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

are non-optimal infrastructure, non-portable make system and lack of the select
support.

The responsible OCERA developers selected the can-0.7.1 driver as a base of their de-
velopment for next reasons:

• Best support for more cards in system
• Supports for many types of cards
• The internal abstraction of the peripheral access method and the chip support
The most important features added by OCERA development team are:

• Added the select system call support
• The support for our memory mapped ISA card added, which proved simplicity of ad-

dition of the support for new type of CAN cards
• Added devfs support
• Revised and bug-fixed the IRQ support in the first phase
• Added support for 2.6.x kernels
• Rebuilt the make system to compile options fully follow the running kernel options,

cross-compilation still possible when the kernel location and compiler is specified. The
driver checked with more 2.2.x, 2.4.x and 2.6.x kernels and hardware configurations.

• Cleaned-up synchronization required to support 2.6.x SMP kernels and enhanced
2.4.x kernels performance

• The deeper rebuilt of the driver infrastructure to enable porting to more systems (most
important RT-Linux). The naive FIFO implementation has been replaced by robust
CAN queues, edges and ends framework. The big advantage of continuous develop-
ment is ability to keep compatibility with many cards and applications

• The infrastructure rewrite enabled to support multiple opening of the single minor
device

• Support for individual queues message acceptance filters added
• The driver setup functions modified to enable PCI and USB hardware hot-swapping

and PnP recognition in the future
• Added support for KVASER PCI cards family
• Added support for virtual can board for more CAN/CANopen components interwork-

ing testing on single computer without real CAN hardware.
• The conditional compilation mode for Linux/RT-Linux support has been added. The

driver manipulates with chips and boards from RT-Linux hard real-time worker threads
in that compilation mode. The POSIX device file interface is provided for RT-Linux
threads in parallel to the standard Linux device interface.

• Work on support for first of intelligent CAN/CANopen cards has been started
The possible future enhancements

• Cleanup and enhance RTR processing. Add some support for emulated RTR process-
ing for SJA1000 chips

• Enhance clients API to gain full advantages of possibility to connect more CAN queues
with different priorities to the one user state structure

• Add support for more CAN cards and chips (82C900 comes to mind)
• Add support for XILINX FPGA based board in development at CTU. There already

exists VHDL source for the chip core, connect it to PC-104 bus and LinCAN driver
• Do next steps in the PCI cards support cleanup and add Linux 2.6.x sysfs support

OCERA. IST 35102 54

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

2.6. LinCAN Driver Internals

2.6.1. Basic Driver Data Structures

struct canhardware_t

Name
struct canhardware_t — structure representing pointers to all CAN boards

Synopsis

struct canhardware_t {
int nr_boards;
struct rtr_id * rtr_queue;
can_spinlock_t rtr_lock;
struct candevice_t * * candevice;

};

Members
nr_boards

number of present boards
rtr_queue

RTR - remote transmission request queue (expect some changes there)
rtr_lock

locking for RTR queue
candevice

array of pointers to CAN devices/boards

struct candevice_t

Name
struct candevice_t — CAN device/board structure

Synopsis

struct candevice_t {
char * hwname;
int candev_idx;
unsigned long io_addr;
unsigned long res_addr;
unsigned long dev_base_addr;
unsigned int flags;
int nr_all_chips;
int nr_82527_chips;
int nr_sja1000_chips;
struct chip_t * * chip;
struct hwspecops_t * hwspecops;
struct canhardware_t * hosthardware_p;
union sysdevptr;

};

Members
hwname

text string with board type

OCERA. IST 35102 55

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

candev_idx
board index in canhardware_t.candevice[]

io_addr
IO/physical MEM address

res_addr
optional reset register port

dev_base_addr
CPU translated IO/virtual MEM address

flags
board flags: PROGRAMMABLE_IRQ.. interrupt number can be programmed into

board
nr_all_chips

number of chips present on the board
nr_82527_chips

number of Intel 8257 chips
nr_sja1000_chips

number of Philips SJA100 chips
chip

array of pointers to the chip structures
hwspecops

pointer to board specific operations
hosthardware_p

pointer to the root hardware structure
sysdevptr

union reserved for pointer to bus specific device structure (case pcidev is used for
PCI devices)

Description
The structure represent configuration and state of associated board. The driver in-
frastructure prepares this structure and calls board type specific board_register
function. The board support provided register function fills right function pointers in
hwspecops structure. Then driver setup calls functions init_hw_data , init_chip_data ,
init_chip_data , init_obj_data and program_irq . Function init_hw_data and
init_chip_data have to specify number and types of connected chips or objects respec-
tively. The use of nr_all_chips is preferred over use of fields nr_82527_chips and
nr_sja1000_chips in the board non-specific functions. The io_addr and dev_base_addr
is filled from module parameters to the same value. The request_io function can fix-up
dev_base_addr field if virtual address is different than bus address.

struct chip_t

Name
struct chip_t — CAN chip state and type information

Synopsis

struct chip_t {
char * chip_type;
int chip_idx;
int chip_irq;
unsigned long chip_base_addr;
unsigned int flags;

OCERA. IST 35102 56

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

long clock;
long baudrate;
void (* write_register (unsigned char data,unsigned long address);
unsigned (* read_register (unsigned long address);
unsigned short sja_cdr_reg;
unsigned short sja_ocr_reg;
unsigned short int_cpu_reg;
unsigned short int_clk_reg;
unsigned short int_bus_reg;
struct msgobj_t * * msgobj;
struct chipspecops_t * chipspecops;
struct candevice_t * hostdevice;
int max_objects;
can_spinlock_t chip_lock;
#ifdef CAN_WITH_RTLpthread_t worker_thread;
unsigned long pend_flags;

};

Members
chip_type

text string describing chip type
chip_idx

index of the chip in candevice_t.chip[] array
chip_irq

chip interrupt number if any
chip_base_addr

chip base address in the CPU IO or virtual memory space
flags

chip flags: CHIP_CONFIGURED.. chip is configured, CHIP_SEGMENTED.. access to
the chip is segmented (mainly for i82527 chips)

clock
chip base clock frequency in Hz

baudrate
selected chip baudrate in Hz

write_register
write chip register function copy -

read_register
read chip register function copy

sja_cdr_reg
SJA specific register - holds hardware specific options for the Clock Divider register.
Options defined in the sja1000.h file: CDR_CLKOUT_MASK, CDR_CLK_OFF, CDR_RXINPEN,
CDR_CBP, CDR_PELICAN

sja_ocr_reg
SJA specific register - hold hardware specific options for the Output Control reg-

ister. Options defined in the sja1000.h file: OCR_MODE_BIPHASE, OCR_MODE_TEST,
OCR_MODE_NORMAL, OCR_MODE_CLOCK, OCR_TX0_LH, OCR_TX1_ZZ.

int_cpu_reg
Intel specific register - holds hardware specific options for the CPU Interface regis-
ter. Options defined in the i82527.h file: iCPU_CEN, iCPU_MUX, iCPU_SLP, iCPU_PWD,
iCPU_DMC, iCPU_DSC, iCPU_RST.

int_clk_reg
Intel specific register - holds hardware specific options for the Clock Out register.

Options defined in the i82527.h file: iCLK_CD0, iCLK_CD1, iCLK_CD2, iCLK_CD3,
iCLK_SL0 , iCLK_SL1 .

OCERA. IST 35102 57

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

int_bus_reg
Intel specific register - holds hardware specific options for the Bus Configuration

register. Options defined in the i82527.h file: iBUS_DR0, iBUS_DR1, iBUS_DT1,
iBUS_POL, iBUS_CBY.

msgobj
array of pointers to individual communication objects

chipspecops
pointer to the set of chip specific object filled by init_chip_data function

hostdevice
pointer to chip hosting board

max_objects
maximal number of communication objects connected to this chip

chip_lock
reserved for synchronization of the chip supporting routines (not used in the cur-

rent driver version)
worker_thread

chip worker thread ID (RT-Linux specific field)
pend_flags

holds information about pending interrupt and tx_wake operations (RT-Linux spe-
cific field). Masks values: MSGOBJ_TX_REQUEST.. some of the message objects re-
quires tx_wake call, MSGOBJ_IRQ_REQUEST.. chip interrupt processing required
MSGOBJ_WORKER_WAKE.. marks, that worker thread should be waked for some of
above reasons

Description
The fields write_register and read_register are copied from corresponding fields
from hwspecops structure (chip->hostdevice->hwspecops->write_register and chip->hostdevice-
>hwspecops->read_register) to speedup can_write_reg and can_read_reg functions.

struct msgobj_t

Name
struct msgobj_t — structure holding communication object state

Synopsis

struct msgobj_t {
unsigned long obj_base_addr;
unsigned int minor;
unsigned int object;
unsigned long obj_flags;
int ret;
struct canque_ends_t * qends;
struct canque_edge_t * tx_qedge;
struct canque_slot_t * tx_slot;
int tx_retry_cnt;
struct timer_list tx_timeout;
struct canmsg_t rx_msg;
struct chip_t * hostchip;
atomic_t obj_used;
struct list_head obj_users;

};

OCERA. IST 35102 58

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

Members
obj_base_addr

minor
associated device minor number

object
object number in chip_t structure +1

obj_flags
message object specific flags. Masks values: MSGOBJ_TX_REQUEST.. the message

object requests TX activation MSGOBJ_TX_LOCK.. some IRQ routine or callback on
some CPU is running inside TX activation processing code

ret
field holding status of the last Tx operation

qends
pointer to message object corresponding ends structure

tx_qedge
edge corresponding to transmitted message

tx_slot
slot holding transmitted message, slot is taken from canque_test_outslot call

and is freed by canque_free_outslot or rescheduled canque_again_outslot

tx_retry_cnt
transmission attempt counter

tx_timeout
can be used by chip driver to check for the transmission timeout

rx_msg
temporary storage to hold received messages before calling to canque_filter_msg2edges

hostchip
pointer to the &chip_t structure this object belongs to

obj_used
counter of users (associated file structures for Linux userspace clients) of this object

obj_users
list of user structures of type &canuser_t.

struct canuser_t

Name
struct canuser_t — structure holding CAN user/client state

Synopsis

struct canuser_t {
unsigned long flags;
struct list_head peers;
struct canque_ends_t * qends;
struct msgobj_t * msgobj;
struct canque_edge_t * rx_edge0;
union userinfo;
int magic;

};

OCERA. IST 35102 59

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

Members
flags

used to distinguish Linux/RT-Linux type
peers

for connection into list of object users
qends

pointer to the ends structure corresponding for this user
msgobj

communication object the user is connected to
rx_edge0

default receive queue for filter IOCTL
userinfo

stores user context specific information. The field fileinfo .file holds pointer to
open device file state structure for the Linux user-space client applications

magic
magic number to check consistency when pointer is retrieved from file private field

struct hwspecops_t

Name
struct hwspecops_t — hardware/board specific operations

Synopsis

struct hwspecops_t {
int (* request_io (struct candevice_t *candev);
int (* release_io (struct candevice_t *candev);
int (* reset (struct candevice_t *candev);
int (* init_hw_data (struct candevice_t *candev);
int (* init_chip_data (struct candevice_t *candev, int chipnr);
int (* init_obj_data (struct chip_t *chip, int objnr);
int (* program_irq (struct candevice_t *candev);
void (* write_register (unsigned char data,unsigned long address);
unsigned (* read_register (unsigned long address);

};

Members
request_io

reserve io or memory range for can board
release_io

free reserved io memory range
reset

hardware reset routine
init_hw_data

called to initialize &candevice_t structure, mainly res_add , nr_all_chips , nr_82527_chips ,
nr_sja1000_chips and flags fields

init_chip_data
called initialize each &chip_t structure, mainly chip_type , chip_base_addr ,

clock and chip specific registers. It is responsible to setup &chip_t->chipspecops
functions for non-standard chip types (type other than “i82527”, “sja1000” or “sja1000p”)

init_obj_data
called initialize each &msgobj_t structure, mainly obj_base_addr field.

OCERA. IST 35102 60

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

program_irq
program interrupt generation hardware of the board if flag PROGRAMMABLE_IRQis
present for specified device/board

write_register
low level write register routine

read_register
low level read register routine

struct chipspecops_t

Name
struct chipspecops_t — can controller chip specific operations

Synopsis

struct chipspecops_t {
int (* chip_config (struct chip_t *chip);
int (* baud_rate (struct chip_t *chip, int rate, int clock, int sjw,int sampl_pt, int flags);
int (* standard_mask (struct chip_t *chip, unsigned short code,unsigned short mask);
int (* extended_mask (struct chip_t *chip, unsigned long code,unsigned long mask);
int (* message15_mask (struct chip_t *chip, unsigned long code,unsigned long mask);
int (* clear_objects (struct chip_t *chip);
int (* config_irqs (struct chip_t *chip, short irqs);
int (* pre_read_config (struct chip_t *chip, struct msgobj_t *obj);
int (* pre_write_config (struct chip_t *chip, struct msgobj_t *obj,struct canmsg_t *msg);
int (* send_msg (struct chip_t *chip, struct msgobj_t *obj,struct canmsg_t *msg);
int (* remote_request (struct chip_t *chip, struct msgobj_t *obj);
int (* check_tx_stat (struct chip_t *chip);
int (* wakeup_tx (struct chip_t *chip, struct msgobj_t *obj);
int (* enable_configuration (struct chip_t *chip);
int (* disable_configuration (struct chip_t *chip);
int (* set_btregs (struct chip_t *chip, unsigned short btr0,unsigned short btr1);
int (* start_chip (struct chip_t *chip);
int (* stop_chip (struct chip_t *chip);
can_irqreturn_t (* irq_handler (int irq, void *dev_id, struct pt_regs *regs);

};

Members
chip_config

CAN chip configuration
baud_rate

set communication parameters
standard_mask

setup of mask for message filtering
extended_mask

setup of extended mask for message filtering
message15_mask

set mask of i82527 message object 15
clear_objects

clears state of all message object residing in chip
config_irqs

tunes chip hardware interrupt delivery
pre_read_config

prepares message object for message reception
pre_write_config

prepares message object for message transmission

OCERA. IST 35102 61

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

send_msg
initiate message transmission

remote_request
configures message object and asks for RTR message

check_tx_stat
checks state of transmission engine

wakeup_tx
wakeup TX processing

enable_configuration
enable chip configuration mode

disable_configuration
disable chip configuration mode

set_btregs
configures bitrate registers

start_chip
starts chip message processing

stop_chip
stops chip message processing

irq_handler
interrupt service routine

2.6.2. Board Support Functions
The functions, which should be implemented for each supported board, are described in
the next section. The functions are prefixed by boardname. The prefix template has
been selected for next description.

template_request_io

Name
template_request_io — reserve io or memory range for can board

Synopsis
int template_request_io (struct candevice_t * candev);

Arguments
candev

pointer to candevice/board which asks for io. Field io_addr of candev is used in
most cases to define start of the range

Description
The function template_request_io is used to reserve the io-memory. If your hard-
ware uses a dedicated memory range as hardware control registers you will have to add
the code to reserve this memory as well. IO_RANGEis the io-memory range that gets
reserved, please adjust according your hardware. Example: #define IO_RANGE 0x100
for i82527 chips or #define IO_RANGE 0x20 for sja1000 chips in basic CAN mode.

OCERA. IST 35102 62

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

Return Value
The function returns zero on success or -ENODEVon failure

File
src/template.c

template_release_io

Name
template_release_io — free reserved io memory range

Synopsis
int template_release_io (struct candevice_t * candev);

Arguments
candev

pointer to candevice/board which releases io

Description
The function template_release_io is used to free reserved io-memory. In case you
have reserved more io memory, don’t forget to free it here. IO_RANGE is the io-memory
range that gets released, please adjust according your hardware. Example: #define IO_RANGE
0x100 for i82527 chips or #define IO_RANGE 0x20 for sja1000 chips in basic CAN mode.

Return Value
The function always returns zero

File
src/template.c

template_reset

Name
template_reset — hardware reset routine

Synopsis
int template_reset (struct candevice_t * candev);

Arguments
candev

Pointer to candevice/board structure

OCERA. IST 35102 63

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

Description
The function template_reset is used to give a hardware reset. This is rather hardware
specific so I haven’t included example code. Don’t forget to check the reset status of the
chip before returning.

Return Value
The function returns zero on success or -ENODEVon failure

File
src/template.c

template_init_hw_data

Name
template_init_hw_data — Initialize hardware cards

Synopsis
int template_init_hw_data (struct candevice_t * candev);

Arguments
candev

Pointer to candevice/board structure

Description
The function template_init_hw_data is used to initialize the hardware structure
containing information about the installed CAN-board. RESET_ADDRrepresents the io-
address of the hardware reset register. NR_82527 represents the number of Intel 82527
chips on the board. NR_SJA1000 represents the number of Philips sja1000 chips on the
board. The flags entry can currently only be CANDEV_PROGRAMMABLE_IRQto indicate
that the hardware uses programmable interrupts.

Return Value
The function always returns zero

File
src/template.c

template_init_chip_data

Name
template_init_chip_data — Initialize chips

Synopsis
int template_init_chip_data (struct candevice_t * candev , int chipnr);

OCERA. IST 35102 64

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

Arguments
candev

Pointer to candevice/board structure
chipnr

Number of the CAN chip on the hardware card

Description
The function template_init_chip_data is used to initialize the hardware structure
containing information about the CAN chips. CHIP_TYPE represents the type of CAN
chip. CHIP_TYPE can be “i82527” or “sja1000”. The chip_base_addr entry represents
the start of the ’official’ memory map of the installed chip. It’s likely that this is the same
as the io_addr argument supplied at module loading time. The clock entry holds the
chip clock value in Hz. The entry sja_cdr_reg holds hardware specific options for
the Clock Divider register. Options defined in the sja1000 .h file: CDR_CLKOUT_MASK,
CDR_CLK_OFF, CDR_RXINPEN, CDR_CBP, CDR_PELICANThe entry sja_ocr_reg holds
hardware specific options for the Output Control register. Options defined in the sja1000 .h
file: OCR_MODE_BIPHASE, OCR_MODE_TEST, OCR_MODE_NORMAL, OCR_MODE_CLOCK, OCR_TX0_LH,
OCR_TX1_ZZ. The entry int_clk_reg holds hardware specific options for the Clock
Out register. Options defined in the i82527 .h file: iCLK_CD0, iCLK_CD1, iCLK_CD2,
iCLK_CD3, iCLK_SL0 , iCLK_SL1 . The entry int_bus_reg holds hardware specific op-
tions for the Bus Configuration register. Options defined in the i82527 .h file: iBUS_DR0,
iBUS_DR1, iBUS_DT1, iBUS_POL, iBUS_CBY. The entry int_cpu_reg holds hardware
specific options for the cpu interface register. Options defined in the i82527 .h file:
iCPU_CEN, iCPU_MUX, iCPU_SLP, iCPU_PWD, iCPU_DMC, iCPU_DSC, iCPU_RST.

Return Value
The function always returns zero

File
src/template.c

template_init_obj_data

Name
template_init_obj_data — Initialize message buffers

Synopsis
int template_init_obj_data (struct chip_t * chip , int objnr);

Arguments
chip

Pointer to chip specific structure
objnr

Number of the message buffer

OCERA. IST 35102 65

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

Description
The function template_init_obj_data is used to initialize the hardware structure
containing information about the different message objects on the CAN chip. In case
of the sja1000 there’s only one message object but on the i82527 chip there are 15.
The code below is for a i82527 chip and initializes the object base addresses The en-
try obj_base_addr represents the first memory address of the message object. In case
of the sja1000 obj_base_addr is taken the same as the chips base address. Unless the
hardware uses a segmented memory map, flags can be set zero.

Return Value
The function always returns zero

File
src/template.c

template_program_irq

Name
template_program_irq — program interrupts

Synopsis
int template_program_irq (struct candevice_t * candev);

Arguments
candev

Pointer to candevice/board structure

Description
The function template_program_irq is used for hardware that uses programmable
interrupts. If your hardware doesn’t use programmable interrupts you should not set
the candevices_t ->flags entry to CANDEV_PROGRAMMABLE_IRQand leave this func-
tion unedited. Again this function is hardware specific so there’s no example code.

Return value
The function returns zero on success or -ENODEVon failure

File
src/template.c

template_write_register

Name
template_write_register — Low level write register routine

OCERA. IST 35102 66

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

Synopsis
void template_write_register (unsigned char data , unsigned long address);

Arguments
data

data to be written
address

memory address to write to

Description
The function template_write_register is used to write to hardware registers on the
CAN chip. You should only have to edit this function if your hardware uses some specific
write process.

Return Value
The function does not return a value

File
src/template.c

template_read_register

Name
template_read_register — Low level read register routine

Synopsis
unsigned template_read_register (unsigned long address);

Arguments
address

memory address to read from

Description
The function template_read_register is used to read from hardware registers on
the CAN chip. You should only have to edit this function if your hardware uses some
specific read process.

Return Value
The function returns the value stored in address

File
src/template.c

OCERA. IST 35102 67

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

2.6.3. Chip Support Functions
The controller chip specific functions are described in the next section. The functions
should be prefixed by chip type. Because documentation of chip functions has been re-
trieved from the actual SJA1000 PeliCAN support, the function prefix is sja1000p .

sja1000p_enable_configuration

Name
sja1000p_enable_configuration — enable chip configuration mode

Synopsis
int sja1000p_enable_configuration (struct chip_t * chip);

Arguments
chip

pointer to chip state structure

sja1000p_disable_configuration

Name
sja1000p_disable_configuration — disable chip configuration mode

Synopsis
int sja1000p_disable_configuration (struct chip_t * chip);

Arguments
chip

pointer to chip state structure

sja1000p_chip_config

Name
sja1000p_chip_config — can chip configuration

Synopsis
int sja1000p_chip_config (struct chip_t * chip);

Arguments
chip

pointer to chip state structure

OCERA. IST 35102 68

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

Description
This function configures chip and prepares it for message transmission and reception.
The function resets chip, resets mask for acceptance of all messages by call to sja1000p_extended_mask
function and then computes and sets baudrate with use of function sja1000p_baud_rate .

Return Value
negative value reports error.

File
src/sja1000p.c

sja1000p_extended_mask

Name
sja1000p_extended_mask — setup of extended mask for message filtering

Synopsis
int sja1000p_extended_mask (struct chip_t * chip , unsigned long code , unsigned long mask);

Arguments
chip

pointer to chip state structure
code

can message acceptance code
mask

can message acceptance mask

Return Value
negative value reports error.

File
src/sja1000p.c

sja1000p_baud_rate

Name
sja1000p_baud_rate — set communication parameters.

Synopsis
int sja1000p_baud_rate (struct chip_t * chip , int rate , int clock , int sjw , int sampl_pt , int flags);

Arguments
chip

pointer to chip state structure

OCERA. IST 35102 69

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

rate

baud rate in Hz
clock

frequency of sja1000 clock in Hz (ISA osc is 14318000)
sjw

synchronization jump width (0-3) prescaled clock cycles
sampl_pt

sample point in % (0-100) sets (TSEG1+1)/(TSEG1+TSEG2+2) ratio
flags

fields BTR1_SAM, OCMODE, OCPOL, OCTP, OCTN, CLK_OFF, CBP

Return Value
negative value reports error.

File
src/sja1000p.c

sja1000p_read

Name
sja1000p_read — reads and distributes one or more received messages

Synopsis
void sja1000p_read (struct chip_t * chip , struct msgobj_t * obj);

Arguments
chip

pointer to chip state structure
obj

pinter to CAN message queue information

File
src/sja1000p.c

sja1000p_pre_read_config

Name
sja1000p_pre_read_config — prepares message object for message reception

Synopsis
int sja1000p_pre_read_config (struct chip_t * chip , struct msgobj_t * obj);

OCERA. IST 35102 70

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

Arguments
chip

pointer to chip state structure
obj

pointer to message object state structure

Return Value
negative value reports error. Positive value indicates immediate reception of message.

File
src/sja1000p.c

sja1000p_pre_write_config

Name
sja1000p_pre_write_config — prepares message object for message transmission

Synopsis
int sja1000p_pre_write_config (struct chip_t * chip , struct msgobj_t * obj , struct canmsg_t * msg);

Arguments
chip

pointer to chip state structure
obj

pointer to message object state structure
msg

pointer to CAN message

Description
This function prepares selected message object for future initiation of message trans-
mission by sja1000p_send_msg function. The CAN message data and message ID are
transfered from msg slot into chip buffer in this function.

Return Value
negative value reports error.

File
src/sja1000p.c

sja1000p_send_msg

Name
sja1000p_send_msg — initiate message transmission

OCERA. IST 35102 71

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

Synopsis
int sja1000p_send_msg (struct chip_t * chip , struct msgobj_t * obj , struct canmsg_t * msg);

Arguments
chip

pointer to chip state structure
obj

pointer to message object state structure
msg

pointer to CAN message

Description
This function is called after sja1000p_pre_write_config function, which prepares
data in chip buffer.

Return Value
negative value reports error.

File
src/sja1000p.c

sja1000p_check_tx_stat

Name
sja1000p_check_tx_stat — checks state of transmission engine

Synopsis
int sja1000p_check_tx_stat (struct chip_t * chip);

Arguments
chip

pointer to chip state structure

Return Value
negative value reports error. Positive return value indicates transmission under way
status. Zero value indicates finishing of all issued transmission requests.

File
src/sja1000p.c

sja1000p_set_btregs

Name
sja1000p_set_btregs — configures bitrate registers

OCERA. IST 35102 72

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

Synopsis
int sja1000p_set_btregs (struct chip_t * chip , unsigned short btr0 , unsigned short btr1);

Arguments
chip

pointer to chip state structure
btr0

bitrate register 0
btr1

bitrate register 1

Return Value
negative value reports error.

File
src/sja1000p.c

sja1000p_start_chip

Name
sja1000p_start_chip — starts chip message processing

Synopsis
int sja1000p_start_chip (struct chip_t * chip);

Arguments
chip

pointer to chip state structure

Return Value
negative value reports error.

File
src/sja1000p.c

sja1000p_stop_chip

Name
sja1000p_stop_chip — stops chip message processing

Synopsis
int sja1000p_stop_chip (struct chip_t * chip);

OCERA. IST 35102 73

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

Arguments
chip

pointer to chip state structure

Return Value
negative value reports error.

File
src/sja1000p.c

sja1000p_remote_request

Name
sja1000p_remote_request — configures message object and asks for RTR message

Synopsis
int sja1000p_remote_request (struct chip_t * chip , struct msgobj_t * obj);

Arguments
chip

pointer to chip state structure
obj

pointer to message object structure

Return Value
negative value reports error.

File
src/sja1000p.c

sja1000p_standard_mask

Name
sja1000p_standard_mask — setup of mask for message filtering

Synopsis
int sja1000p_standard_mask (struct chip_t * chip , unsigned short code , unsigned short mask);

Arguments
chip

pointer to chip state structure
code

can message acceptance code

OCERA. IST 35102 74

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

mask

can message acceptance mask

Return Value
negative value reports error.

File
src/sja1000p.c

sja1000p_clear_objects

Name
sja1000p_clear_objects — clears state of all message object residing in chip

Synopsis
int sja1000p_clear_objects (struct chip_t * chip);

Arguments
chip

pointer to chip state structure

Return Value
negative value reports error.

File
src/sja1000p.c

sja1000p_config_irqs

Name
sja1000p_config_irqs — tunes chip hardware interrupt delivery

Synopsis
int sja1000p_config_irqs (struct chip_t * chip , short irqs);

Arguments
chip

pointer to chip state structure
irqs

requested chip IRQ configuration

Return Value
negative value reports error.

OCERA. IST 35102 75

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

File
src/sja1000p.c

sja1000p_irq_write_handler

Name
sja1000p_irq_write_handler — part of ISR code responsible for transmit events

Synopsis
void sja1000p_irq_write_handler (struct chip_t * chip , struct msgobj_t * obj);

Arguments
chip

pointer to chip state structure
obj

pointer to attached queue description

Description
The main purpose of this function is to read message from attached queues and transfer
message contents into CAN controller chip. This subroutine is called by sja1000p_irq_write_handler
for transmit events.

File
src/sja1000p.c

sja1000p_irq_handler

Name
sja1000p_irq_handler — interrupt service routine

Synopsis
can_irqreturn_t sja1000p_irq_handler (int irq , void * dev_id , struct pt_regs * regs);

Arguments
irq

interrupt vector number, this value is system specific
dev_id

driver private pointer registered at time of request_irq call. The CAN driver uses
this pointer to store relationship of interrupt to chip state structure - struct chip_t

regs

system dependent value pointing to registers stored in exception frame

OCERA. IST 35102 76

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

Description
Interrupt handler is activated when state of CAN controller chip changes, there is mes-
sage to be read or there is more space for new messages or error occurs. The receive
events results in reading of the message from CAN controller chip and distribution of
message through attached message queues.

File
src/sja1000p.c

sja1000p_wakeup_tx

Name
sja1000p_wakeup_tx — wakeups TX processing

Synopsis
int sja1000p_wakeup_tx (struct chip_t * chip , struct msgobj_t * obj);

Arguments
chip

pointer to chip state structure
obj

pointer to message object structure

Return Value
negative value reports error.

File
src/sja1000p.c

2.6.4. CAN Queues Common Structures and Functions
This part of the driver implements basic CAN queues infrastructure. It is written as
much generic as possible and then specialization for each category of CAN queues clients
is implemented in separate subsystem. The only synchronization mechanism required
from target system are spin-lock synchronization and atomic bit manipulation. Locked
sections are narrowed to the short operations. Even can message 8 bytes movement is
excluded from the locked sections of the code.

struct canque_slot_t

Name
struct canque_slot_t — one CAN message slot in the CAN FIFO queue

OCERA. IST 35102 77

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

Synopsis

struct canque_slot_t {
struct canque_slot_t * next;
unsigned long slot_flags;
struct canmsg_t msg;

};

Members
next

pointer to the next/younger slot
slot_flags

space for flags and optional command describing action associated with slot data
msg

space for one CAN message

Description
This structure is used to store CAN messages in the CAN FIFO queue.

struct canque_fifo_t

Name
struct canque_fifo_t — CAN FIFO queue representation

Synopsis

struct canque_fifo_t {
unsigned long fifo_flags;
unsigned long error_code;
struct canque_slot_t * head;
struct canque_slot_t ** tail;
struct canque_slot_t * flist;
struct canque_slot_t * entry;
can_spinlock_t fifo_lock;
int slotsnr;

};

Members
fifo_flags

this field holds global flags describing state of the FIFO. CAN_FIFOF_ERRORis
set when some error condition occurs. CAN_FIFOF_ERR2BLOCKdefines, that error
should lead to the FIFO block state. CAN_FIFOF_BLOCKstate blocks insertion of
the next messages. CAN_FIFOF_OVERRUNattempt to acquire new slot, when FIFO
is full. CAN_FIFOF_FULLindicates FIFO full state. CAN_FIFOF_EMPTYindicates no
allocated slot in the FIFO. CAN_FIFOF_DEADcondition indication. Used when FIFO
is beeing destroyed.

error_code
futher description of error condition

head
pointer to the FIFO head, oldest slot

tail
pointer to the location, where pointer to newly inserted slot should be added

flist
pointer to list of the free slots associated with queue

OCERA. IST 35102 78

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

entry
pointer to the memory allocated for the list slots.

fifo_lock
the lock to ensure atomicity of slot manipulation operations.

slotsnr
number of allocated slots

Description
This structure represents CAN FIFO queue. It is implemented as a single linked list of
slots prepared for processing. The empty slots are stored in single linked list (flist).

canque_fifo_get_inslot

Name
canque_fifo_get_inslot — allocate slot for the input of one CAN message

Synopsis
int canque_fifo_get_inslot (struct canque_fifo_t * fifo , struct canque_slot_t ** slotp , int cmd);

Arguments
fifo

pointer to the FIFO structure
slotp

pointer to location to store pointer to the allocated slot.
cmd

optional command associated with allocated slot.

Return Value
The function returns negative value if there is no free slot in the FIFO queue.

canque_fifo_put_inslot

Name
canque_fifo_put_inslot — releases slot to further processing

Synopsis
int canque_fifo_put_inslot (struct canque_fifo_t * fifo , struct canque_slot_t * slot);

Arguments
fifo

pointer to the FIFO structure
slot

pointer to the slot previously acquired by canque_fifo_get_inslot .

OCERA. IST 35102 79

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

Return Value
The nonzero return value indicates, that the queue was empty before call to the function.
The caller should wake-up output side of the queue.

canque_fifo_abort_inslot

Name
canque_fifo_abort_inslot — release and abort slot

Synopsis
int canque_fifo_abort_inslot (struct canque_fifo_t * fifo , struct canque_slot_t * slot);

Arguments
fifo

pointer to the FIFO structure
slot

pointer to the slot previously acquired by canque_fifo_get_inslot .

Return Value
The nonzero value indicates, that fifo was full

canque_fifo_test_outslot

Name
canque_fifo_test_outslot — test and get ready slot from the FIFO

Synopsis
int canque_fifo_test_outslot (struct canque_fifo_t * fifo , struct canque_slot_t ** slotp);

Arguments
fifo

pointer to the FIFO structure
slotp

pointer to location to store pointer to the oldest slot from the FIFO.

Return Value
The negative value indicates, that queue is empty. The positive or zero value represents
command stored into slot by the call to the function canque_fifo_get_inslot . The
successfully acquired FIFO output slot has to be released by the call canque_fifo_free_outslot
or canque_fifo_again_outslot .

OCERA. IST 35102 80

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

canque_fifo_free_outslot

Name
canque_fifo_free_outslot — free processed FIFO slot

Synopsis
int canque_fifo_free_outslot (struct canque_fifo_t * fifo , struct canque_slot_t * slot);

Arguments
fifo

pointer to the FIFO structure
slot

pointer to the slot previously acquired by canque_fifo_test_outslot .

Return Value
The returned value informs about FIFO state change. The mask CAN_FIFOF_FULL in-
dicates, that the FIFO was full before the function call. The mask CAN_FIFOF_EMPTY
informs, that last ready slot has been processed.

canque_fifo_again_outslot

Name
canque_fifo_again_outslot — interrupt and postpone processing of the slot

Synopsis
int canque_fifo_again_outslot (struct canque_fifo_t * fifo , struct canque_slot_t * slot);

Arguments
fifo

pointer to the FIFO structure
slot

pointer to the slot previously acquired by canque_fifo_test_outslot .

Return Value
The function cannot fail..

struct canque_edge_t

Name
struct canque_edge_t — CAN message delivery subsystem graph edge

OCERA. IST 35102 81

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

Synopsis

struct canque_edge_t {
struct canque_fifo_t fifo;
unsigned long filtid;
unsigned long filtmask;
struct list_head inpeers;
struct list_head outpeers;
struct list_head activepeers;
struct canque_ends_t * inends;
struct canque_ends_t * outends;
atomic_t edge_used;
int edge_prio;
int edge_num;
#ifdef CAN_WITH_RTLstruct list_head pending_peers;
unsigned long pending_inops;
unsigned long pending_outops;

};

Members
fifo

place where primitive struct canque_fifo_t FIFO is located.
filtid

the possible CAN message identifiers filter.
filtmask

the filter mask, the comparison considers only filtid bits corresponding to set
bits in the filtmask field.

inpeers
the lists of all peers FIFOs connected by their input side (inends) to the same

terminal (struct canque_ends_t).
outpeers

the lists of all peers FIFOs connected by their output side (outends) to the same
terminal (struct canque_ends_t).

activepeers
the lists of peers FIFOs connected by their output side (outends) to the same

terminal (struct canque_ends_t) with same priority and active state.
inends

the pointer to the FIFO input side terminal (struct canque_ends_t).
outends

the pointer to the FIFO output side terminal (struct canque_ends_t).
edge_used

the atomic usage counter, mainly used for safe destruction of the edge.
edge_prio

the assigned queue priority from the range 0 to CANQUEUE_PRIO_NR-1

edge_num
edge sequential number intended for debugging purposes only

pending_peers
edges with pending delayed events (RTL->Linux calls)

pending_inops
bitmask of pending operations

pending_outops
bitmask of pending operations

OCERA. IST 35102 82

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

Description
This structure represents one direction connection from messages source (inends) to
message consumer (outends) fifo ends hub. The edge contains &struct canque_fifo_t for
message fifo implementation.

struct canque_ends_t

Name
struct canque_ends_t — CAN message delivery subsystem graph vertex (FIFO
ends)

Synopsis

struct canque_ends_t {
unsigned long ends_flags;
struct list_head * active;
struct list_head idle;
struct list_head inlist;
struct list_head outlist;
can_spinlock_t ends_lock;
void (* notify (struct canque_ends_t *qends, struct canque_edge_t *qedge, int what);
void * context;
union endinfo;
struct list_head dead_peers;

};

Members
ends_flags

this field holds flags describing state of the ENDS structure.
active

the array of the lists of active edges directed to the ends structure with ready
messages. The array is indexed by the edges priorities.

idle
the list of the edges directed to the ends structure with empty FIFOs.

inlist
the list of outgoing edges input sides.

outlist
the list of all incoming edges output sides. Each of there edges is listed on one of

active or idle lists.
ends_lock

the lock synchronizing operations between threads accessing same ends structure.
notify

pointer to notify procedure. The next state changes are notified. CANQUEUE_NOTIFY_EMPTY
(out->in call) - all slots are processed by FIFO out side. CANQUEUE_NOTIFY_SPACE
(out->in call) - full state negated => there is space for new message. CANQUEUE_NOTIFY_PROC
(in->out call) - empty state negated => out side is requested to process slots. CANQUEUE_NOTIFY_NOUSR
(both) - notify, that the last user has released the edge usage called with some lock
to prevent edge disappear. CANQUEUE_NOTIFY_DEAD(both) - edge is in progress
of deletion. CANQUEUE_NOTIFY_ATACH(both) - new edge has been attached to end.
CANQUEUE_NOTIFY_FILTCH(out->in call) - edge filter rules changed CANQUEUE_NOTIFY_ERROR
(out->in call) - error in messages processing.

context
space to store ends user specific information

OCERA. IST 35102 83

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

endinfo
space to store some other ends usage specific informations mainly for waking-up by
the notify calls.

dead_peers
used to chain ends wanting for postponed destruction

Description
Structure represents place to connect edges to for CAN communication entity. The zero,
one or more incoming and outgoing edges can be connected to this structure.

canque_notify_inends

Name
canque_notify_inends — request to send notification to the input ends

Synopsis
void canque_notify_inends (struct canque_edge_t * qedge , int what);

Arguments
qedge

pointer to the edge structure
what

notification type

canque_notify_outends

Name
canque_notify_outends — request to send notification to the output ends

Synopsis
void canque_notify_outends (struct canque_edge_t * qedge , int what);

Arguments
qedge

pointer to the edge structure
what

notification type

canque_notify_bothends

Name
canque_notify_bothends — request to send notification to the both ends

OCERA. IST 35102 84

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

Synopsis
void canque_notify_bothends (struct canque_edge_t * qedge , int what);

Arguments
qedge

pointer to the edge structure
what

notification type

canque_activate_edge

Name
canque_activate_edge — mark output end of the edge as active

Synopsis
void canque_activate_edge (struct canque_ends_t * inends , struct canque_edge_t * qedge);

Arguments
inends

input side of the edge
qedge

pointer to the edge structure

Description
Function call moves output side of the edge from idle onto active edges list.

canque_filtid2internal

Name
canque_filtid2internal — converts message ID and filter flags into internal
format

Synopsis
unsigned int canque_filtid2internal (unsigned long id , int filtflags);

Arguments
id

CAN message 11 or 29 bit identifier
filtflags

CAN message flags

OCERA. IST 35102 85

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

Description
This function maps message ID and MSG_RTR, MSG_EXTand MSG_LOCALinto one 32 bit
number

canque_fifo_flush_slots

Name
canque_fifo_flush_slots — free all ready slots from the FIFO

Synopsis
int canque_fifo_flush_slots (struct canque_fifo_t * fifo);

Arguments
fifo

pointer to the FIFO structure

Description
The caller should be prepared to handle situations, when some slots are held by input
or output side slots processing. These slots cannot be flushed or their processing inter-
rupted.

Return Value
The nonzero value indicates, that queue has not been empty before the function call.

canque_fifo_init_slots

Name
canque_fifo_init_slots — initializes slot chain of one CAN FIFO

Synopsis
int canque_fifo_init_slots (struct canque_fifo_t * fifo);

Arguments
fifo

pointer to the FIFO structure

Return Value
The negative value indicates, that there is no memory to allocate space for the requested
number of the slots.

OCERA. IST 35102 86

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

canque_get_inslot

Name
canque_get_inslot — finds one outgoing edge and allocates slot from it

Synopsis
int canque_get_inslot (struct canque_ends_t * qends , struct canque_edge_t ** qedgep , struct canque_slot_t
** slotp , int cmd);

Arguments
qends

ends structure belonging to calling communication object
qedgep

place to store pointer to found edge
slotp

place to store pointer to allocated slot
cmd

command type for slot

Description
Function looks for the first non-blocked outgoing edge in qends structure and tries to
allocate slot from it.

Return Value
If there is no usable edge or there is no free slot in edge negative value is returned.

canque_get_inslot4id

Name
canque_get_inslot4id — finds best outgoing edge and slot for given ID

Synopsis
int canque_get_inslot4id (struct canque_ends_t * qends , struct canque_edge_t ** qedgep , struct
canque_slot_t ** slotp , int cmd, unsigned long id , int prio);

Arguments
qends

ends structure belonging to calling communication object
qedgep

place to store pointer to found edge
slotp

place to store pointer to allocated slot
cmd

command type for slot
id

communication ID of message to send into edge

OCERA. IST 35102 87

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

prio

optional priority of message

Description
Function looks for the non-blocked outgoing edge accepting messages with given ID. If
edge is found, slot is allocated from that edge. The edges with non-zero mask are pre-
ferred over edges open to all messages. If more edges with mask accepts given message
ID, the edge with highest priority below or equal to required priority is selected.

Return Value
If there is no usable edge or there is no free slot in edge negative value is returned.

canque_put_inslot

Name
canque_put_inslot — schedules filled slot for processing

Synopsis
int canque_put_inslot (struct canque_ends_t * qends , struct canque_edge_t * qedge , struct canque_slot_t
* slot);

Arguments
qends

ends structure belonging to calling communication object
qedge

edge slot belong to
slot

pointer to the prepared slot

Description
Puts slot previously acquired by canque_get_inslot or canque_get_inslot4id func-
tion call into FIFO queue and activates edge processing if needed.

Return Value
Positive value informs, that activation of output end has been necessary

canque_abort_inslot

Name
canque_abort_inslot — aborts preparation of the message in the slot

Synopsis
int canque_abort_inslot (struct canque_ends_t * qends , struct canque_edge_t * qedge , struct canque_slot_t
* slot);

OCERA. IST 35102 88

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

Arguments
qends

ends structure belonging to calling communication object
qedge

edge slot belong to
slot

pointer to the previously allocated slot

Description
Frees slot previously acquired by canque_get_inslot or canque_get_inslot4id
function call. Used when message copying into slot fails.

Return Value
Positive value informs, that queue full state has been negated.

canque_filter_msg2edges

Name
canque_filter_msg2edges — sends message into all edges which accept its ID

Synopsis
int canque_filter_msg2edges (struct canque_ends_t * qends , struct canmsg_t * msg);

Arguments
qends

ends structure belonging to calling communication object
msg

pointer to CAN message

Description
Sends message to all outgoing edges connected to the given ends, which accepts message
communication ID.

Return Value
Returns number of edges message has been send to

canque_test_outslot

Name
canque_test_outslot — test and retrieve ready slot for given ends

Synopsis
int canque_test_outslot (struct canque_ends_t * qends , struct canque_edge_t ** qedgep , struct canque_slot_t
** slotp);

OCERA. IST 35102 89

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

Arguments
qends

ends structure belonging to calling communication object
qedgep

place to store pointer to found edge
slotp

place to store pointer to received slot

Description
Function takes highest priority active incoming edge and retrieves oldest ready slot from
it.

Return Value
Negative value informs, that there is no ready output slot for given ends. Positive value
is equal to the command slot has been allocated by the input side.

canque_free_outslot

Name
canque_free_outslot — frees processed output slot

Synopsis
int canque_free_outslot (struct canque_ends_t * qends , struct canque_edge_t * qedge , struct canque_slot_t
* slot);

Arguments
qends

ends structure belonging to calling communication object
qedge

edge slot belong to
slot

pointer to the processed slot

Description
Function releases processed slot previously acquired by canque_test_outslot func-
tion call.

Return Value
Return value informs if input side has been notified to know about change of edge state

canque_again_outslot

Name
canque_again_outslot — reschedule output slot to process it again later

OCERA. IST 35102 90

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

Synopsis
int canque_again_outslot (struct canque_ends_t * qends , struct canque_edge_t * qedge , struct canque_slot_t
* slot);

Arguments
qends

ends structure belonging to calling communication object
qedge

edge slot belong to
slot

pointer to the slot for re-processing

Description
Function reschedules slot previously acquired by canque_test_outslot function call
for second time processing.

Return Value
Function cannot fail.

canque_set_filt

Name
canque_set_filt — sets filter for specified edge

Synopsis
int canque_set_filt (struct canque_edge_t * qedge , unsigned long filtid , unsigned long filtmask ,
int filtflags);

Arguments
qedge

pointer to the edge
filtid

ID to set for the edge
filtmask

mask used for ID match check
filtflags

required filer flags

Return Value
Negative value is returned if edge is in the process of delete.

OCERA. IST 35102 91

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

canque_flush

Name
canque_flush — fluesh all ready slots in the edge

Synopsis
int canque_flush (struct canque_edge_t * qedge);

Arguments
qedge

pointer to the edge

Description
Tries to flush all allocated slots from the edge, but there could exist some slots associ-
ated to edge which are processed by input or output side and cannot be flushed at this
moment.

Return Value
The nonzero value indicates, that queue has not been empty before the function call.

canqueue_ends_init_gen

Name
canqueue_ends_init_gen — subsystem independent routine to initialize ends state

Synopsis
int canqueue_ends_init_gen (struct canque_ends_t * qends);

Arguments
qends

pointer to the ends structure

Return Value
Cannot fail.

canqueue_connect_edge

Name
canqueue_connect_edge — connect edge between two communication entities

Synopsis
int canqueue_connect_edge (struct canque_edge_t * qedge , struct canque_ends_t * inends , struct
canque_ends_t * outends);

OCERA. IST 35102 92

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

Arguments
qedge

pointer to edge
inends

pointer to ends the input of the edge should be connected to
outends

pointer to ends the output of the edge should be connected to

Return Value
Negative value informs about failed operation.

canqueue_disconnect_edge

Name
canqueue_disconnect_edge — disconnect edge from communicating entities

Synopsis
int canqueue_disconnect_edge (struct canque_edge_t * qedge);

Arguments
qedge

pointer to edge

Return Value
Negative value means, that edge is used by somebody other and cannot be disconnected.
Operation has to be delayed.

canqueue_block_inlist

Name
canqueue_block_inlist — block slot allocation of all outgoing edges of specified
ends

Synopsis
void canqueue_block_inlist (struct canque_ends_t * qends);

Arguments
qends

pointer to ends structure

OCERA. IST 35102 93

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

canqueue_block_outlist

Name
canqueue_block_outlist — block slot allocation of all incoming edges of specified
ends

Synopsis
void canqueue_block_outlist (struct canque_ends_t * qends);

Arguments
qends

pointer to ends structure

canqueue_ends_kill_inlist

Name
canqueue_ends_kill_inlist — sends request to die to all outgoing edges

Synopsis
int canqueue_ends_kill_inlist (struct canque_ends_t * qends , int send_rest);

Arguments
qends

pointer to ends structure
send_rest

select, whether already allocated slots should be processed by FIFO output side

Return Value
Non-zero value means, that not all edges could be immediately disconnected and that
ends structure memory release has to be delayed

canqueue_ends_kill_outlist

Name
canqueue_ends_kill_outlist — sends request to die to all incoming edges

Synopsis
int canqueue_ends_kill_outlist (struct canque_ends_t * qends);

Arguments
qends

pointer to ends structure

OCERA. IST 35102 94

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

Return Value
Non-zero value means, that not all edges could be immediately disconnected and that
ends structure memory release has to be delayed

2.6.5. CAN Queues Kernel Specific Functions

canqueue_notify_kern

Name
canqueue_notify_kern — notification callback handler for Linux userspace clients

Synopsis
void canqueue_notify_kern (struct canque_ends_t * qends , struct canque_edge_t * qedge , int what);

Arguments
qends

pointer to the callback side ends structure
qedge

edge which invoked notification
what

notification type

Description
The notification event is handled directly by call of this function except case, when called
from RT-Linux context in mixed mode Linux/RT-Linux compilation. It is not possible to
directly call Linux kernel synchronization primitives in such case. The notification re-
quest is postponed and signaled by pending_inops flags by call canqueue_rtl2lin_check_and_pend
function. The edge reference count is increased until until all pending notifications are
processed.

canqueue_ends_init_kern

Name
canqueue_ends_init_kern — Linux userspace clients specific ends initialization

Synopsis
int canqueue_ends_init_kern (struct canque_ends_t * qends);

Arguments
qends

pointer to the callback side ends structure

OCERA. IST 35102 95

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

canque_get_inslot4id_wait_kern

Name
canque_get_inslot4id_wait_kern — find or wait for best outgoing edge and slot
for given ID

Synopsis
int canque_get_inslot4id_wait_kern (struct canque_ends_t * qends , struct canque_edge_t ** qedgep ,
struct canque_slot_t ** slotp , int cmd, unsigned long id , int prio);

Arguments
qends

ends structure belonging to calling communication object
qedgep

place to store pointer to found edge
slotp

place to store pointer to allocated slot
cmd

command type for slot
id

communication ID of message to send into edge
prio

optional priority of message

Description
Same as canque_get_inslot4id , except, that it waits for free slot in case, that queue
is full. Function is specific for Linux userspace clients.

Return Value
If there is no usable edge negative value is returned.

canque_get_outslot_wait_kern

Name
canque_get_outslot_wait_kern — receive or wait for ready slot for given ends

Synopsis
int canque_get_outslot_wait_kern (struct canque_ends_t * qends , struct canque_edge_t ** qedgep ,
struct canque_slot_t ** slotp);

Arguments
qends

ends structure belonging to calling communication object
qedgep

place to store pointer to found edge

OCERA. IST 35102 96

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

slotp

place to store pointer to received slot

Description
The same as canque_test_outslot , except it waits in the case, that there is no ready
slot for given ends. Function is specific for Linux userspace clients.

Return Value
Negative value informs, that there is no ready output slot for given ends. Positive value
is equal to the command slot has been allocated by the input side.

canque_sync_wait_kern

Name
canque_sync_wait_kern — wait for all slots processing

Synopsis
int canque_sync_wait_kern (struct canque_ends_t * qends , struct canque_edge_t * qedge);

Arguments
qends

ends structure belonging to calling communication object
qedge

pointer to edge

Description
Functions waits for ends transition into empty state.

Return Value
Positive value indicates, that edge empty state has been reached. Negative or zero value
informs about interrupted wait or other problem.

canque_fifo_init_kern

Name
canque_fifo_init_kern — initialize one CAN FIFO

Synopsis
int canque_fifo_init_kern (struct canque_fifo_t * fifo , int slotsnr);

Arguments
fifo

pointer to the FIFO structure

OCERA. IST 35102 97

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

slotsnr

number of requested slots

Return Value
The negative value indicates, that there is no memory to allocate space for the requested
number of the slots.

canque_fifo_done_kern

Name
canque_fifo_done_kern — frees slots allocated for CAN FIFO

Synopsis
int canque_fifo_done_kern (struct canque_fifo_t * fifo);

Arguments
fifo

pointer to the FIFO structure

canque_new_edge_kern

Name
canque_new_edge_kern — allocate new edge structure in the Linux kernel context

Synopsis
struct canque_edge_t * canque_new_edge_kern (int slotsnr);

Arguments
slotsnr

required number of slots in the newly allocated edge structure

Return Value
Returns pointer to allocated slot structure or NULL if there is not enough memory to
process operation.

canqueue_ends_dispose_kern

Name
canqueue_ends_dispose_kern — finalizing of the ends structure for Linux kernel
clients

OCERA. IST 35102 98

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

Synopsis
int canqueue_ends_dispose_kern (struct canque_ends_t * qends , int sync);

Arguments
qends

pointer to ends structure
sync

flag indicating, that user wants to wait for processing of all remaining messages

Return Value
Function should be designed such way to not fail.

2.6.6. CAN Queues RT-Linux Specific Functions

canqueue_rtl2lin_check_and_pend

Name
canqueue_rtl2lin_check_and_pend — postpones edge notification if called from
RT-Linux

Synopsis
int canqueue_rtl2lin_check_and_pend (struct canque_ends_t * qends , struct canque_edge_t * qedge ,
int what);

Arguments
qends

notification target ends
qedge

edge delivering notification
what

notification type

Return Value
if called from Linux context, returns 0 and lefts notification processing on caller re-
sponsibility. If called from RT-Linux contexts, schedules postponed event delivery and
returns 1

canque_get_inslot4id_wait_rtl

Name
canque_get_inslot4id_wait_rtl — find or wait for best outgoing edge and slot for
given ID

OCERA. IST 35102 99

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

Synopsis
int canque_get_inslot4id_wait_rtl (struct canque_ends_t * qends , struct canque_edge_t ** qedgep ,
struct canque_slot_t ** slotp , int cmd, unsigned long id , int prio);

Arguments
qends

ends structure belonging to calling communication object
qedgep

place to store pointer to found edge
slotp

place to store pointer to allocated slot
cmd

command type for slot
id

communication ID of message to send into edge
prio

optional priority of message

Description
Same as canque_get_inslot4id , except, that it waits for free slot in case, that queue
is full. Function is specific for Linux userspace clients.

Return Value
If there is no usable edge negative value is returned.

canque_get_outslot_wait_rtl

Name
canque_get_outslot_wait_rtl — receive or wait for ready slot for given ends

Synopsis
int canque_get_outslot_wait_rtl (struct canque_ends_t * qends , struct canque_edge_t ** qedgep ,
struct canque_slot_t ** slotp);

Arguments
qends

ends structure belonging to calling communication object
qedgep

place to store pointer to found edge
slotp

place to store pointer to received slot

Description
The same as canque_test_outslot , except it waits in the case, that there is no ready
slot for given ends. Function is specific for Linux userspace clients.

OCERA. IST 35102 100

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

Return Value
Negative value informs, that there is no ready output slot for given ends. Positive value
is equal to the command slot has been allocated by the input side.

canque_sync_wait_rtl

Name
canque_sync_wait_rtl — wait for all slots processing

Synopsis
int canque_sync_wait_rtl (struct canque_ends_t * qends , struct canque_edge_t * qedge);

Arguments
qends

ends structure belonging to calling communication object
qedge

pointer to edge

Description
Functions waits for ends transition into empty state.

Return Value
Positive value indicates, that edge empty state has been reached. Negative or zero value
informs about interrupted wait or other problem.

canque_fifo_init_rtl

Name
canque_fifo_init_rtl — initialize one CAN FIFO

Synopsis
int canque_fifo_init_rtl (struct canque_fifo_t * fifo , int slotsnr);

Arguments
fifo

pointer to the FIFO structure
slotsnr

number of requested slots

Return Value
The negative value indicates, that there is no memory to allocate space for the requested
number of the slots.

OCERA. IST 35102 101

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

canque_fifo_done_rtl

Name
canque_fifo_done_rtl — frees slots allocated for CAN FIFO

Synopsis
int canque_fifo_done_rtl (struct canque_fifo_t * fifo);

Arguments
fifo

pointer to the FIFO structure

canque_new_edge_rtl

Name
canque_new_edge_rtl — allocate new edge structure in the RT-Linux context

Synopsis
struct canque_edge_t * canque_new_edge_rtl (int slotsnr);

Arguments
slotsnr

required number of slots in the newly allocated edge structure

Return Value
Returns pointer to allocated slot structure or NULL if there is not enough memory to
process operation.

canqueue_notify_rtl

Name
canqueue_notify_rtl — notification callback handler for Linux userspace clients

Synopsis
void canqueue_notify_rtl (struct canque_ends_t * qends , struct canque_edge_t * qedge , int what);

Arguments
qends

pointer to the callback side ends structure
qedge

edge which invoked notification

OCERA. IST 35102 102

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

what

notification type

canqueue_ends_init_rtl

Name
canqueue_ends_init_rtl — RT-Linux clients specific ends initialization

Synopsis
int canqueue_ends_init_rtl (struct canque_ends_t * qends);

Arguments
qends

pointer to the callback side ends structure

canqueue_ends_dispose_rtl

Name
canqueue_ends_dispose_rtl — finalizing of the ends structure for Linux kernel
clients

Synopsis
int canqueue_ends_dispose_rtl (struct canque_ends_t * qends , int sync);

Arguments
qends

pointer to ends structure
sync

flag indicating, that user wants to wait for processing of all remaining messages

Return Value
Function should be designed such way to not fail.

canqueue_rtl_initialize

Name
canqueue_rtl_initialize — initialization of global RT-Linux specific features

Synopsis
void canqueue_rtl_initialize (void);

OCERA. IST 35102 103

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

Arguments
void

no arguments

canqueue_rtl_done

Name
canqueue_rtl_done — finalization of glopal RT-Linux specific features

Synopsis
void canqueue_rtl_done (void);

Arguments
void

no arguments

2.6.7. CAN Queues CAN Chips Specific Functions

canqueue_notify_chip

Name
canqueue_notify_chip — notification callback handler for CAN chips ends of queues

Synopsis
void canqueue_notify_chip (struct canque_ends_t * qends , struct canque_edge_t * qedge , int what);

Arguments
qends

pointer to the callback side ends structure
qedge

edge which invoked notification
what

notification type

Description
This function has to deal with more possible cases. It can be called from the kernel or
interrupt context for Linux only compilation of driver. The function can be called from
kernel context or RT-Linux thread context for mixed mode Linux/RT-Linux compilation.

OCERA. IST 35102 104

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

canqueue_ends_init_chip

Name
canqueue_ends_init_chip — CAN chip specific ends initialization

Synopsis
int canqueue_ends_init_chip (struct canque_ends_t * qends , struct chip_t * chip , struct msgobj_t
* obj);

Arguments
qends

pointer to the ends structure
chip

pointer to the corresponding CAN chip structure
obj

pointer to the corresponding message object structure

canqueue_ends_done_chip

Name
canqueue_ends_done_chip — finalizing of the ends structure for CAN chips

Synopsis
int canqueue_ends_done_chip (struct canque_ends_t * qends);

Arguments
qends

pointer to ends structure

Return Value
Function should be designed such way to not fail.

2.6.8. CAN Boards and Chip Setup specific Functions

can_checked_malloc

Name
can_checked_malloc — memory allocation with registering of requested blocks

Synopsis
void * can_checked_malloc (size_t size);

OCERA. IST 35102 105

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

Arguments
size

size of the requested block

Description
The function is used in the driver initialization phase to catch possible memory leaks
for future driver finalization or case, that driver initialization fail.

Return Value
pointer to the allocated memory or NULL in the case of fail

can_checked_free

Name
can_checked_free — free memory allocated by can_checked_malloc

Synopsis
int can_checked_free (void * address_p);

Arguments
address_p

pointer to the memory block

can_del_mem_list

Name
can_del_mem_list — check for stale memory allocations at driver finalization

Synopsis
int can_del_mem_list (void);

Arguments
void

no arguments

Description
Checks, if there are still some memory blocks allocated and releases memory occupied
by such blocks back to the system

OCERA. IST 35102 106

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

can_request_io_region

Name
can_request_io_region — request IO space region

Synopsis
int can_request_io_region (unsigned long start , unsigned long n, const char * name);

Arguments
start

the first IO port address
n

number of the consecutive IO port addresses
name

name/label for the requested region

Description
The function hides system specific implementation of the feature.

Return Value
returns positive value (1) in the case, that region could be reserved for the driver. Re-
turns zero (0) if there is collision with other driver or region cannot be taken for some
other reason.

can_release_io_region

Name
can_release_io_region — release IO space region

Synopsis
void can_release_io_region (unsigned long start , unsigned long n);

Arguments
start

the first IO port address
n

number of the consecutive IO port addresses

can_request_mem_region

Name
can_request_mem_region — request memory space region

OCERA. IST 35102 107

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

Synopsis
int can_request_mem_region (unsigned long start , unsigned long n, const char * name);

Arguments
start

the first memory port physical address
n

number of the consecutive memory port addresses
name

name/label for the requested region

Description
The function hides system specific implementation of the feature.

Return Value
returns positive value (1) in the case, that region could be reserved for the driver. Re-
turns zero (0) if there is collision with other driver or region cannot be taken for some
other reason.

can_release_mem_region

Name
can_release_mem_region — release memory space region

Synopsis
void can_release_mem_region (unsigned long start , unsigned long n);

Arguments
start

the first memory port physical address
n

number of the consecutive memory port addresses

can_base_addr_fixup

Name
can_base_addr_fixup — relocates board physical memory addresses to the CPU
accessible ones

Synopsis
int can_base_addr_fixup (struct candevice_t * candev , unsigned long new_base);

OCERA. IST 35102 108

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

Arguments
candev

pointer to the previously filled device/board, chips and message objects structures
new_base

candev new base address

Description
This function adapts base addresses of all structures of one board to the new board base
address. It is required for translation between physical and virtual address mappings.
This function is prepared to simplify board specific xxx_request_io function for mem-
ory mapped devices.

register_obj_struct

Name
register_obj_struct — registers message object into global array

Synopsis
int register_obj_struct (struct msgobj_t * obj , int minorbase);

Arguments
obj

the initialized message object being registered
minorbase

wanted minor number, if (-1) automatically selected

Return Value
returns negative number in the case of fail

register_chip_struct

Name
register_chip_struct — registers chip into global array

Synopsis
int register_chip_struct (struct chip_t * chip , int minorbase);

Arguments
chip

the initialized chip structure being registered
minorbase

wanted minor number base, if (-1) automatically selected

OCERA. IST 35102 109

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

Return Value
returns negative number in the case of fail

init_hw_struct

Name
init_hw_struct — initializes driver hardware description structures

Synopsis
int init_hw_struct (void);

Arguments
void

no arguments

Description
The function init_hw_struct is used to initialize the hardware structure.

Return Value
returns negative number in the case of fail

init_device_struct

Name
init_device_struct — initializes single CAN device/board

Synopsis
int init_device_struct (int card , int * chan_param_idx_p , int * irq_param_idx_p);

Arguments
card

index into hardware_p HW description
chan_param_idx_p

pointer to the index into arrays of the CAN channel parameters
irq_param_idx_p

pointer to the index into arrays of the per CAN channel IRQ parameters

Description
The function builds representation of the one board from parameters provided

OCERA. IST 35102 110

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

in the module parameters arrays
hw[card] .. hardware type, io [card] .. base IO address, baudrate [chan_param_idx] .. per
channel baudrate, minor [chan_param_idx] .. optional specification of requested channel
minor base, irq [irq_param_idx] .. one or more board/chips IRQ parameters. The indexes
are advanced after consumed parameters if the registration is successful.
The hardware specific operations of the device/board are initialized by call to init_hwspecops
function. Then board data are initialized by board specific init_hw_data function.
Then chips and objects representation is build by init_chip_struct function. If all
above steps are successful, chips and message objects are registered into global arrays.

Return Value
returns negative number in the case of fail

init_chip_struct

Name
init_chip_struct — initializes one CAN chip structure

Synopsis
int init_chip_struct (struct candevice_t * candev , int chipnr , int irq , long baudrate);

Arguments
candev

pointer to the corresponding CAN device/board
chipnr

index of the chip in the corresponding device/board structure
irq

chip IRQ number or (-1) if not appropriate
baudrate

baudrate in the units of 1Bd

Description
Chip structure is allocated and chip specific operations are filled by call to board specific
init_chip_data function and generic init_chipspecops function. The message ob-
jects are generated by calls to init_obj_struct function.

Return Value
returns negative number in the case of fail

init_obj_struct

Name
init_obj_struct — initializes one CAN message object structure

OCERA. IST 35102 111

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

Synopsis
int init_obj_struct (struct candevice_t * candev , struct chip_t * hostchip , int objnr);

Arguments
candev

pointer to the corresponding CAN device/board
hostchip

pointer to the chip containing this object
objnr

index of the builded object in the chip structure

Description
The function initializes message object structure and allocates and initializes CAN queue
chip ends structure.

Return Value
returns negative number in the case of fail

init_hwspecops

Name
init_hwspecops — finds and initializes board/device specific operations

Synopsis
int init_hwspecops (struct candevice_t * candev , int * irqnum_p);

Arguments
candev

pointer to the corresponding CAN device/board
irqnum_p

optional pointer to the number of interrupts required by board

Description
The function searches board hwname in the list of supported boards types. The board
type specific board_register function is used to initialize hwspecops operations.

Return Value
returns negative number in the case of fail

init_chipspecops

Name
init_chipspecops — fills chip specific operations for board for known chip types

OCERA. IST 35102 112

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

Synopsis
int init_chipspecops (struct candevice_t * candev , int chipnr);

Arguments
candev

pointer to the corresponding CAN device/board
chipnr

index of the chip in the device/board structure

Description
The function fills chip specific operations for next known generic chip types “i82527”,
“sja1000”, “sja1000p” (PeliCAN). Other non generic chip types operations has to be ini-
tialized in the board specific init_chip_data function.

Return Value
returns negative number in the case of fail

can_chip_setup_irq

Name
can_chip_setup_irq — attaches chip to the system interrupt processing

Synopsis
int can_chip_setup_irq (struct chip_t * chip);

Arguments
chip

pointer to CAN chip structure

Return Value
returns negative number in the case of fail

can_chip_free_irq

Name
can_chip_free_irq — unregisters chip interrupt handler from the system

Synopsis
void can_chip_free_irq (struct chip_t * chip);

OCERA. IST 35102 113

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

Arguments
chip

pointer to CAN chip structure

2.6.9. CAN Boards and Chip Finalization Functions

msgobj_done

Name
msgobj_done — destroys one CAN message object

Synopsis
void msgobj_done (struct msgobj_t * obj);

Arguments
obj

pointer to CAN message object structure

canchip_done

Name
canchip_done — destroys one CAN chip representation

Synopsis
void canchip_done (struct chip_t * chip);

Arguments
chip

pointer to CAN chip structure

candevice_done

Name
candevice_done — destroys representation of one CAN device/board

Synopsis
void candevice_done (struct candevice_t * candev);

OCERA. IST 35102 114

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

Arguments
candev

pointer to CAN device/board structure

canhardware_done

Name
canhardware_done — destroys representation of all CAN devices/boards

Synopsis
void canhardware_done (struct canhardware_t * canhw);

Arguments
canhw

pointer to the root of all CAN hardware representation

2.7. LinCAN Usage Information

2.7.1. Installation Prerequisites
The next basic conditions are necessary for the LinCAN driver usage

• some of supported types of CAN interface boards (high or low speed). Not required for
virtual board setup.

• cables and at least one device compatible with the board or the second computer with
an another CAN interface board. Not required for virtual board setup. Even more
clients can communicate each with another if process local is enabled for real chip
driver.

• working Linux system with any recent 2.6.x, 2.4.x or 2.2.x kernel (successfully tested
on 2.4.18, 2.4.22, 2.2.19, 2.2.20, 2.2.22, 2.6.0 kernels) or working setup for kernel cross-
compilation

• installed native and or target specific development tools (GCC and binutils) and pre-
configured kernel sources corresponding to the running kernel or intended target for
cross-compilation

Every non-archaic Linux distribution should provide good starting point for the LinCAN
driver installation.
If mixed mode compilation for Linux/RT-Linux is required, additional conditions has to
be fulfilled:

• RT-Linux version 3.2 or higher is required and RT-Linux enabled Linux kernel sources
and configuration has to be prepared. The recommended is use of OCERA Linux/RT-
Linux release (http://www.ocera.org).

• RT-Linux real-time malloc support. It is already included in the OCERA release. It
can be downloaded from OCERA web site for older RT-Linux releases as well (http://www.ocera.org/download/components/index.html).

The RT-Linux specific Makefiles infrastructure is not distributed with the current stan-
dard LinCAN distribution yet. Please, download full OCERA-CAN package or retrieve
sources from CVS by next command:

cvs -d:pserver:anonymous@cvs.ocera.sourceforge.net:/cvsroot/ocera login

OCERA. IST 35102 115

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

cvs -z3 -d:pserver:anonymous@cvs.ocera.sourceforge.net:/cvsroot/ocera co ocera/components/comm/can

2.7.2. Quick Installation Instructions
Change current directory into the LinCAN driver source root directory

cd lincan-dir

invoke make utility. Just type ’make’ at the command line and driver should compile
without errors

make

If there is problem with compilation, look at first lines produced by ’make’ command or
store make output in file. More about possible problems and more complex compilation
examples is in the next subsection.
Install built LinCAN driver object file (can.o) into Linux kernel loadable module di-
rectory (/lib/modules/2. x . y /kernel/drivers/char). This and next commands
needs root privileges to proceed successfully.

make install

If device filesystem (devfs) is not used on the computer, device nodes have to be created
manually.

mknod -m666 /dev/can0 c 91 0
mknod -m666 /dev/can1 c 91 1
...
mknod -m666 /dev/can7 c 97 7

The parameters, IO address and interrupt line of inserted CAN interface card need to be
determined and configured. The manual driver load can be invoked from the command
line with parameters similar to example below

insmod can.o hw=pip5 irq=4 io=0x8000

This commands loads module with selected one card support for PIP5 board type with
IO port base address 0x8000 and interrupt line 4. The full description of module pa-
rameters is in the next subsection. If module starts correctly utilities from utils subdi-
rectory can be used to test CAN message interchange with device or another computer.
The parameters should be written into file /etc/modules.conf for subsequent mod-
ule startup by modprobe command.
Line added to file /etc/modules.conf follows

options can hw=pip5 irq=4 io=0x8000

The module dependencies should be updated by command
depmod -a

The driver can be now stopped and started by simple modprobe command
modprobe -r can modprobe can

2.7.3. Installation instructions
The LinCAN make solutions tries to fully automate native kernel out of tree module
compilation. Make system recurses through kernel Makefile to achieve selection of
right preprocessor, compiler and linker directives. The description of make targets after
make invocation in driver top directory follows

lincan-drv/Makefile (all)
LinCAN driver top makefile

OCERA. IST 35102 116

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

lincan-drv/src/Makefile (default or all -> make_this_module)
Needs to resolve target system kernel sources location. This can be selected manu-
ally by uncommenting the Makefile definition KERNEL_LOCATION=/usr/src/linux-
2.2.22. The default behavior is to find the running kernel version and look for path
to sources of found kernel version in /lib/modules/2. x . y /build directory. If
no such directory exists, older version of kernel is assumed and makefile tries the
/usr/src/linux directory.

lib/modules/2.x .y /build/Makefile SUBDIRS=.../lincan-drv/src (modules)
The kernel supplied Makefile is responsible for defining of right defines for pre-
processor, compiler and linker. If the Linux kernel is cross-compiled, Linux kernel
sources root Makefile needs be edited before Linux kernel compilation. The vari-
able CROSS_COMPILE should contain development tool-chain prefix, for exam-
ple arm-linux-. The Linux kernel make process recurses back into LinCAN driver
src/Makefile .

lincan-drv/src/Makefile (modules)
This pass starts real LinCAN driver build actions.

If there is problem with automatic build process, the next commands can help to diag-
nose the problem.

make clean make >make.out 2>&1

The first lines of file make.out indicates auto-detected values and can help with resolv-
ing of possible problems.

make -C src default ;
make -C utils default ;
make[1]: /scripts/pathdown.sh: Command not found
make[1]: Entering directory ‘/usr/src/can-0.7.1-pi3.4/src’
echo >.supported_cards.h echo \#define ENABLE_CARD_pip 1 >>.supported_cards.h ; ...
Linux kernel version 2.4.19
echo Linux kernel sources /lib/modules/2.4.19/build
Linux kernel sources /lib/modules/2.4.19/build
echo Module target can.o
Module target can.o
echo Module objects proc.o pip.o pccan.o smartcan.o nsi.o ...
make[2]: Entering directory ‘/usr/src/linux-2.4.19’

The driver size can be decreased by restricting of number of supported types of boards.
This can be done by editing of definition for SUPPORTED_CARDS variable.
There is complete description of driver supported parameters.

insmod can.o hw= ’your hardware’ irq= ’irq number’ io= ’io address’ <more options>

The more values can be specified for hw, irq and io parameters if more cards is used.
Values are separated by commas in such case. The hw argument can be one of:

• pip5 , for the pip5 computer by MPL
• pip6 , for the pip6 computer by MPL
• pccan-q , for the PCcan-Q ISA card by KVASER
• pccan-f , for the PCcan-F ISA card by KVASER
• pccan-s , for the PCcan-S ISA card by KVASER
• pccan-d , for the PCcan-D ISA card by KVASER
• pcican-q , for the PCIcan-Q PCI card by KVASER (4x SJA1000)
• pcican-d , for the PCIcan-D PCI card by KVASER (2x SJA1000)
• pcican-s , for the PCIcan-S PCI card by KVASER (1x SJA1000)
• nsican , for the CAN104 PC/104 card by NSI
• cc104 , for the CAN104 PC/104 card by Contemporary Controls
• aim104 , for the AIM104CAN PC/104 card by Arcom Control Systems
• pc-i03 , for the PC-I03 ISA card by IXXAT

OCERA. IST 35102 117

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

• pcm3680 , for the PCM-3680 PC/104 card by Advantech
• m437, for the M436 PC/104 card by SECO
• bfadcan for sja1000 CAN embedded card made by BFAD GmbH
• pikronisa for ISA memory mapped sja1000 CAN card made by PiKRON Ltd.
• template , for yet unsupported hardware (you need to edit src/template.c)
• virtual , virtual/dummy board support for testing of driver and software devices and

applications
The lists of values for board hardware type (hw) and board base IO address (io) pa-
rameters have to contain same number of values. If the value of io has no meaning for
specified hardware type (virtual or PCI board), it has to be substituted by 0.
The number of required irq values per board is variable. The virtual and PCI board
demands no value, most of the other boards requires one irq value per each chip/channel.
The <more options> can be one or more of:

• major =<nr> , major specifies the major number of the driver. Default value is 91
• minor =<nr> , you can specify which base minor number the driver should use for each

can channel/chip. Consecutive numbers are taken in the case, that chip supports more
communication objects. The values for channels are separated by comas

• extended =[1| 0] , enables automatic switching to extended format if ID>2047, se-
lects extended frames reception for i82527

• pelican =[1| 0] , unused parameter, PeliCAN used by default for sja1000p chips now
• baudrate =<nr> , baudrate for each channel in step of 1kBd
• clock_freq =<nr> , the frequency of the CAN quartz for BfaD board
• stdmask =<nr> , default standard mask for some (i82527) chips
• extmask =<nr> , default extended mask for some (i82527) chips
• mo15mask=<nr> , sets the mask for message object 15 (i82527 only)
• processlocal =<nr> , select post-processing/loop-back of transmitted messages

0 .. disabled
1 .. can be enabled by application by FIFO filter setup
2 .. enabled by default

• can_rtl_priority =<nr> , select priority of chip worker thread for driver compiled
with RT-Linux support

Actual list of supported CAN module parameters and short description can be reached
by invocation of the command

modinfo can

.

2.7.4. Simple Utilities
The simple test utilities can be found in the utils subdirectory of the LinCAN driver
source subtree. These utilities can be used as base for user programs directly communi-
cating with the LinCAN driver. We do not suggest to build applications directly depen-
dent on the driver operating system specific interface. We suggest to use the VCA API
library for communication with the driver which brings higher level of system interface
abstraction and ensures compatibility with the future versions of LinCAN driver and
RT-Linux driver clone versions. The actual low level RT-Linux API to LinCAN driver
closely matches open /close , read /write and ioctl interface. Only select cannot be
provided directly by RT-Linux API.
The basic utilities provided with LinCAN driver are:

rxtx
the simple utility to receive or send message which guides user through operation,
the message type, the message ID and the message contents by simple prompts

OCERA. IST 35102 118

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

send
even more simplistic message sending program

readburst
the utility for continuous messages reception and printing of the message contents.
This utility can be used as an example of the select system call usage.

sendburst
the periodic message generator. Each message is filled by the constant pattern and
the message sequence number. This utility can be used for throughput and message
drops tests.

can-proxy
the simple TCP/IP to CAN proxy. The proxy receives simple commands from IP
datagrams and processes command sending and state manipulations. Received mes-
sages are packed into IP datagrams and send back to the client.

readburst

Name
readburst — the utility for continuous messages reception and printing of the
message contents

Synopsis
readburst [-d candev] [-m mask] [-i id] [-f flags] [-w sec] [-p prefix] [-V] [-h]

Description
The utility readburst can be used to monitor or log CAN messages received by one CAN
message communication object. Even outgoing transmitted messages can be logged if
process local is globally or explicitly enabled.

OPTIONS
-d --device

This options selects readburst target CAN device. If the option is not specified,
default device name /dev/can0 is used.

-m --mask

This option enables to change default mask accepting all messages to the speci-
fied CAN message id mask. The hexadecimal value has to be prefixed by prefix 0x .
Numeric value without any prefix is considered as decimal one.

-i --id

This option specifies CAN message identifier in the acceptance mask. The accepted
CAN messages are then printed by readburst command. Only bits corresponding
to the non-zero bits of acceptance mask are compared. Hexadecimal value has to be
prefixed by any prefix 0x . Numeric value without prefix is considered as decimal
one.

-f --flags

Specification of modifiers flags of receiption CAN queur. Hexadecimal value has to
be prefixed by prefix 0x . Numeric value without any prefix is considered as decimal
one.

Bit name Bit
num-
ber

Mask Description

MSG_RTR 0 0x1 Receive RTR or non-RTR messages

OCERA. IST 35102 119

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

Bit name Bit
num-
ber

Mask Description

MSG_EXT 2 0x4 Receive extended/standard messages
MSG_LOCAL 3 0x8 Receive local or external messages
MSG_RTR_MASK 8 0x100 Take care about MSG_RTRbit else RTR and

non-RTR messages are accepted
MSG_EXT_MASK 10 0x400 Take care about MSG_EXTbit else extended

and standard messages are accepted
MSG_LOCAL_MASK 11 0x800 Take care about MSG_LOCALbit else both

local and external messages are accepted
MSG_PROCESSLOCAL9 0x200 Enable processing of the local messages if

not explicitly enabled globally or disabled
globally.

-w --wait

The number of second the readburst waits in the select call.
-p --prefix

The prefix string can is added at beginning of each printed line. The format
specifies %scould be used to add device name into prefix.

-V --version

Print command version.
-h --help

Print command usage information

sendburst

Name
sendburst — the utility for continuous messages reception and printing of the
message contents

Synopsis
sendburst [-d candev] [-i id] [-s] [-f flags] [-w sec] [-b blocksize] [-c count] [-p
prefix] [-V] [-h]

Description
The utility sendburst generates blocks of messages with specified CAN message ID.
The burst block of blocksize messages is generated and pushed into can device. If
count is specified, the command stops and exits after count of message blocks send.

OPTIONS
-d --device

This options selects sendburst target CAN device. If the option is not specified,
default device name /dev/can0 is used.

-i --id

This option specifies which CAN message ID is used for transmitted blocks of mes-
sages. Hexadecimal value has to be prefixed by prefix 0x . Numeric value without
any prefix is considered as decimal one.

OCERA. IST 35102 120

Chapter 2. Linux/RT-Linux CAN Driver (LinCAN)

-f --flags

Specification of modifiers flags of the send message. Hexadecimal value has to be
prefixed by prefix 0x . Numeric value without prefix is considered as decimal one.
Bit name Bit

number
Mask Description

MSG_RTR 0 0x1 Generate RTR messages if specified
MSG_EXT 2 0x4 Use extended messages identifiers if specified

-s --sync

Open device in the synchronous mode. The send and close blocks until message
is sent to to CAN bus.

-w --wait

The number of second the sendburst waits between sending burst blocks.
-b --block

The number of messages in the one burst block. Default value is 10 .
-c --count

The number of block send after command invocation. If specified, command finishes
and returns after specified number of blocks. If unspecified, the sendburst runs for
infinite time.

-p --prefix

The prefix string can is added at beginning of each printed line. The format
specifies %scould be used to add device name into prefix.

-V --version

Print command version.
-h --help

Print command usage information

OCERA. IST 35102 121

Chapter 3. CAN/CANopen

3.1. Virtual CAN API (VCA)
The virtual CAN API is an interface used to connect the application threads either with
the CAN hardware card or with other software layers substituting CAN bus. The appli-
cation thread can live either in the Hard RT space or in the Soft RT space. In the words
we can say that VCA is a common API between the CAN driver and the application
threads.

3.1.1. Summary
Name of the component

Virtual CAN API (VCA)
Author

Pavel Pisa, Frantisek Vacek
Reviewer

not validated
Layer

Low-level, High-level
Version

0.2 Beta
Status

Beta
Dependencies

Needs CAN driver module for used level.
Release date

February 2004

3.1.2. Description
A virtual CAN API is an interface used to connect the application threads either with a
CAN bus. An application thread can live either on low-level (RT-Linux) or on application-
level (user space). In the other words we can say that VCA is an uniform layer between
a CAN driver and the application threads on any level.

3.1.3. API / Compatibility

3.1.3.1. VCA API

struct canmsg_t

Name
struct canmsg_t — structure representing CAN message

Synopsis

struct canmsg_t {
short flags;
int cob;
unsigned long id;
unsigned long timestamp;

122

Chapter 3. CAN/CANopen

unsigned int length;
unsigned char * data;

};

Members
flags

extra flags for internal use
cob

communication object number (not used)
id

ID of CAN message
timestamp

not used
length

length of used data
data

data bytes buffer

Header
can.h

vca_h2log

Name
vca_h2log — converts VCA handle to printable number

Synopsis
long vca_h2log (vca_handle_t vcah);

Arguments
vcah

VCA handle

Header
can_vca.h

Return Value
unique printable VCA handle number

vca_open_handle

Name
vca_open_handle — opens new VCA handle from CAN driver

OCERA. IST 35102 123

Chapter 3. CAN/CANopen

Synopsis
int vca_open_handle (vca_handle_t * vcah_p , const char * dev_name , const char * options , int flags);

Arguments
vcah_p

points to location filled by new VCA handle
dev_name

name of requested CAN device, if NULL, default VCA_DEV_NAME is used
options

options argument, can be NULL
flags

flags modifying style of open (VCA_O_NOBLOCK)

Header
can_vca.h

Return Value
VCA_OK in case of success

vca_close_handle

Name
vca_close_handle — closes previously acquired VCA handle

Synopsis
int vca_close_handle (vca_handle_t vcah);

Arguments
vcah

VCA handle

Header
can_vca.h

Return Value
Same as libc close returns.

vca_send_msg_seq

Name
vca_send_msg_seq — sends sequentially block of CAN messages

OCERA. IST 35102 124

Chapter 3. CAN/CANopen

Synopsis
int vca_send_msg_seq (vca_handle_t vcah , canmsg_t * messages , int count);

Arguments
vcah

VCA handle
messages

points to continuous array of CAN messages to send
count

count of messages in array

Header
can_vca.h

Return Value
Number of sucessfully sent messages or error < 0

vca_rec_msg_seq

Name
vca_rec_msg_seq — receive sequential block of CAN messages

Synopsis
int vca_rec_msg_seq (vca_handle_t vcah , canmsg_t * messages , int count);

Arguments
vcah

VCA handle
messages

points to array for received CAN messages
count

number of message slots in array

Header
can_vca.h

Return Value
number of received messages or error < 0

vca_wait

Name
vca_wait — blocking wait for the new message(s)

OCERA. IST 35102 125

Chapter 3. CAN/CANopen

Synopsis
int vca_wait (vca_handle_t vcah , int wait_msec , int what);

Arguments
vcah

VCA handle
wait_msec

number of miliseconds to wait, 0 => forever
what

0,1 => wait for Rx message, 2 => wait for Tx - free 3 => wait for both

Header
can_vca.h

Return Value
Positive value if wait condition is satisfied

vca_log

Name
vca_log — generic logging facility for VCA library

Synopsis
void vca_log (const char * domain , int level , const char * format ,);

Arguments
domain

pointer to character string representing source of logged event, it is VCA_LDOMAIN
for library itself

level

severity level
format

printf style format followed by arguments
...

variable arguments

Description
This functions is used for logging of various events. If not overridden by application,
logged messages goes to the stderr. Environment variable VCA_LOG_FILENAMEcan be
used to redirect output to file. Environment variable VCA_DEBUG_FLGcan be used to
select different set of logged events through vca_debug_flg.

Note
only messages with level <= vca_log_cutoff_level will be logged. see can_vca .h

OCERA. IST 35102 126

Chapter 3. CAN/CANopen

vca_log_redir

Name
vca_log_redir — redirects default log output function

Synopsis
void vca_log_redir (vca_log_fnc_t * log_fnc , int add_flags);

Arguments
log_fnc

new log output function. Value NULL resets to default function
add_flags

some more flags

3.1.4. Implementation issues
Applications can be connected to CAN via VCA in two ways, either from hard real-time
space or from soft real-time one. Other CAN driver is used in each case (RT-Linux or
Linux resp.) (see LinCan CAN driver), but VCA remains always the same. Actually
libvca does not contain functions like select or other functions which can suspend
calling thread. This approach makes libvca independent on used RT OS synchroniza-
tion mechanisms.

C
A

N
 c

a
rd

C
A

N
 b

u
s

C AN driver

C ANmaster

C ANslave

user spaceR T -Linux / kernel spaceHW

libvca

R
T

-F
IF

O
s

c anmod

T C P /IP

remote
applications

(for ex.
C anMonitor)

named pipes

communication
linking

read/write/ioctlread/write/ioctl

Figure 3-1. Hard real time CAN driver usage example

C
A

N
 c

a
rd

C AN driver

C
A

N
 b

u
s

user spaceR T -Linux / kernel spaceHW

/d
e

v/
ca

n
 x

x

T C P /IP

named
pipes

remote
applications

(for ex.
C anMonitor)

c anmod

C ANmaster

C ANslave

communication
linking

libvca

read/write/ioctl

Figure 3-2. Soft real time CAN driver usage example

OCERA. IST 35102 127

Chapter 3. CAN/CANopen

On figures above we can find, two possible examples of CAN usage in hard real time and
also in soft real time. Both figures are describing CANopen VCA exploitation, for more
information (see Section 3.2, CAN device and canmond).

3.1.5. Tests
Only soft real-time solution was tested yet. Only functionality was tested, no heavy
tests were made. All tests were performed during CANmaster and CANslave testing
(see CanMonitor tests).
All VCA sources were compiled by GNU C ver. 3.2 and linked with glibc ver. 2.2.5. All
VCA sources can be compiled by GNU C ver. 2.96 and above

3.1.6. Examples
Directory ocera/components/comm/can/canvca/cantest contains two example pro-
grams - sendcan.c and readcan.c. First one shows the simplest way to send CAN message
via VCA. The second one shows, how to read CAN message.
sendcan invocation: sendcan id byte_1 ... byte_n n <= 8
Note: If you communicate with CANopen device, you do not forget restart CAN device
before communication (sendcan 0 1 0).

3.1.7. Installation instructions
All communication components can be compiled issuing make command in their direc-
tory. Compiled programs can be found in ocera/components/comm/can/_compiled/bin_utils .
VCA components don’t have special requirements on gcc or glibc version.

3.2. CAN device

3.2.1. Summary
Name of the component

CANopen device
Author

Pavel Pisa
Frantisek Vacek

Reviewer
not validated

Layer
Low-level, High-level, libraries are layer independent

Version
0.1 Alfa

Status
Alfa

Dependencies
CANmaster and CANslave need CAN driver and libvca installed.

Release date
February 2004

OCERA. IST 35102 128

Chapter 3. CAN/CANopen

3.2.2. Description
CANopen device component consists of two programs, CANmaster and CANslave . Both
of them are software solutions based on PDO processor (see Section 3.2.3.1, PDO pro-
cessor API), SDO FSM (Finite State Machine) (see Section 3.2.3.2, SDO FSM API), OD
(Object dictionary) generated from EDS file (see Section 3.2.3.3, Object Dictionary API)
and HDS (Hardware Definition Sheet) file.

3.2.3. API / Compatibility
CANopen devices should be compatible with standard industrial CANopen devices ac-
cording to CiA Draft Standard 301.

3.2.3.1. PDO processor API
This library supports PDO messages processing.

struct vcapdo_mapping_t

Name
struct vcapdo_mapping_t — structure representing mapping of sigle object in PDO

Synopsis

struct vcapdo_mapping_t {
vcaod_object_t * object;
unsigned char start;
unsigned char len;
sui_dinfo_t * dinfo;

};

Members
object

pointer to the mapped object
start

bit offset of object value in PDO
len

bit length of object value in PDO
dinfo

pointer to object data source. Every PDO can be read/written through dinfo to the
OD or to hardware. Actualy there is no other way for PDO object to do that.

struct vcapdolst_object_t

Name
struct vcapdolst_object_t — structure representing single PDO object

Synopsis

struct vcapdolst_object_t {
gavl_node_t my_node;
struct vcaPDOProcessor_t * pdo_processor;
unsigned long cob_id;
unsigned char transmition_type;
unsigned flags;

OCERA. IST 35102 129

Chapter 3. CAN/CANopen

unsigned char sync_every;
unsigned char sync_counter;
__u16 inhibit_time;
__u16 event_timer;
int mapped_cnt;
vcapdo_mapping_t * mapped_objects;
evc_rx_hub_t rx_hub;

};

Members
my_node

structure necessary for storing node in GAVL tree
pdo_processor

pointer to PDO processor servicing this PDO
cob_id

COB ID of PDO
transmition_type

type of PDO transmission according to DS301 table 55
flags

PDO characteristics and parsed transmission_type
sync_every

synchronous PDO will be processed every n-th SYNC message
sync_counter

auxiliary variable for sync_every

inhibit_time
minimum gap between two PDO transmissions (multiples of 100 us)

event_timer
if nonzero, PDO is transmitted every event_timer ms. Valid only in transmission
modes 254, 255. (!vcapdoFlagSynchronous && !vcapdoFlagRTROnly)

mapped_cnt
number of mapped objects in OD

mapped_objects
array to structures describing mapping details for all mapped objects

rx_hub
If PDO communication is event driven, appropriate events are connected to this

hub

pdo_buff
buffer for received/transmitted PDO

struct vcapdolst_root_t

Name
struct vcapdolst_root_t — structure representing root of OD

Synopsis

struct vcapdolst_root_t {
gavl_node_t * my_root;

};

OCERA. IST 35102 130

Chapter 3. CAN/CANopen

Members
my_root

object dictionary GAVL tree root

struct vcaPDOProcessor_t

Name
struct vcaPDOProcessor_t — structure used for PDO communication

Synopsis

struct vcaPDOProcessor_t {
vcapdolst_root_t pdolst_root;
vcapdo_send_to_can_fnc_t * send_to_can_fnc;
vcaod_root_t * od_root;
//vcaDinfoManager_t * dinfo_mgr;
int node_id;

};

Members
pdolst_root

GAVL containing all defined &vcapdolst_object_t structures
send_to_can_fnc

PDOProcessor should use this function if it needs to send CAN message during
processing

od_root
pointer to used OD (necessary for PDOs creation and initialization in vcaPDOProcessor_createPDOLIst)

dinfo_mgr
pointer to used DinfoManager (providing HW dinfos during initialization)

node_id
Node number, optional parameter, if it is specified, default PDO COB-IDs can be

assigned if they are not specified in EDS. If node_id is 0, then it is ignored.

Description
vcaPDOProcessor is responsible for all PDO related tasks in CANopen device

vcaPDOProcessor_init

Name
vcaPDOProcessor_init — vcaPDOProcessor constructor

Synopsis
void vcaPDOProcessor_init (vcaPDOProcessor_t * proc);

OCERA. IST 35102 131

Chapter 3. CAN/CANopen

Arguments
proc

pointer to PDO processor to work with

vcaPDOProcessor_destroy

Name
vcaPDOProcessor_destroy — vcaPDOProcessor destructor

Synopsis
void vcaPDOProcessor_destroy (vcaPDOProcessor_t * proc);

Arguments
proc

pointer to PDO processor to work with

Description
It releases all PDO objects

vcaPDOProcessor_setOD

Name
vcaPDOProcessor_setOD — assign OD to PDOProcessor

Synopsis
void vcaPDOProcessor_setOD (vcaPDOProcessor_t * proc , vcaod_root_t * od_root);

Arguments
proc

pointer to PDO processor to work with
od_root

assigned root of Object Dictionary

vcaPDOProcessor_createPDOList

Name
vcaPDOProcessor_createPDOList — scans OD and creates all valid PDO
structures.

OCERA. IST 35102 132

Chapter 3. CAN/CANopen

Synopsis
int vcaPDOProcessor_createPDOList (vcaPDOProcessor_t * proc);

Arguments
proc

pointer to PDO processor to work with

Description
It also deletes previously created PDO structures (if any).

Return
0 or negative number in case of an error

_vcaPDOProcessor_disconnectDinfoLinks

Name
_vcaPDOProcessor_disconnectDinfoLinks — disconnect all PDOs and their dinfo
structures

Synopsis
void _vcaPDOProcessor_disconnectDinfoLinks (vcaPDOProcessor_t * proc);

Arguments
proc

pointer to PDO processor to work with

Description
Actualy it only decrements RefCnt, so only dinfos with RefCnt==1 will be deleted

vcaPDOProcessor_makeDinfoLinks

Name
vcaPDOProcessor_makeDinfoLinks — scans defined PDOs and makes necessary
data links from PDOs to OD and HW

Synopsis
void vcaPDOProcessor_makeDinfoLinks (vcaPDOProcessor_t * proc);

Arguments
proc

pointer to PDO processor to work with

OCERA. IST 35102 133

Chapter 3. CAN/CANopen

Description
Disconnect all connected dinfos. For each mapped object tries to find appropriate dinfo
asking DinfoManager. If DinfoManager returns NULL, thats means, that no HW is con-
nected to this object. In such case function creates dbuff_dinfo for data stored in OD and
connect it to mapped PDO.

vcaPDOProcessor_processMsg

Name
vcaPDOProcessor_processMsg — tries to process msg

Synopsis
int vcaPDOProcessor_processMsg (vcaPDOProcessor_t * proc , canmsg_t * msg);

Arguments
proc

pointer to PDO processor to work with
msg

CAN msg to proceed

Return
zero if msg is processed

3.2.3.2. SDO FSM API
This library should be used for SDO FSM implementation.

struct vcasdo_fsm_t

Name
struct vcasdo_fsm_t — structure representing SDO FSM

Synopsis

struct vcasdo_fsm_t {
unsigned srvcli_cob_id;
unsigned clisrv_cob_id;
unsigned node;
unsigned index, subindex;
struct timeval last_activity;
int bytes_to_load;
unsigned char toggle_bit;
char is_server;
char is_uploader;
int state;
vcasdo_fsm_state_fnc_t * statefnc;
int err_no;
ul_dbuff_t data;
canmsg_t out_msg;

};

OCERA. IST 35102 134

Chapter 3. CAN/CANopen

Members
srvcli_cob_id

SDO server-client COB_ID (default is 0x580 + node), port on which master listen
clisrv_cob_id

SDO client-server COB_ID (default is 0x600 + node), port on which slave listen
node

CANopen node number
subindex

subindex of communicated object
last_activity

time of last FSM activity (internal use)
bytes_to_load

number of stil not uploaded SDO data bytes (internal use)
toggle_bit

(internal use)
is_server

type of FSM client or server (Master or Slave) (internal use)
is_uploader

processing upload/download in state sdofsmRun, sdofsmDone
state

state of SDO (sdofsmIdle = 0, sdofsmRun , sdofsmDone , sdofsmError , sdofsmAbort)
statefnc

pointer to the state function (internal use)
err_no

error number in state sdofsmError .
data

uploaded/downloaded bytes (see ul_dbuff .h)
out_msg

if vcasdo_taste_msg generates answer, it is stored in the out_msg

vcasdo_fsm_upload1

Name
vcasdo_fsm_upload1 — starts SDO upload using parameters set by previous calling
vcasdo_init_fsm

Synopsis
int vcasdo_fsm_upload1 (vcasdo_fsm_t * fsm);

Arguments
fsm

FSM to work with

OCERA. IST 35102 135

Chapter 3. CAN/CANopen

vcasdo_fsm_download1

Name
vcasdo_fsm_download1 — starts SDO download using parameters set by previous
calling vcasdo_init_fsm

Synopsis
int vcasdo_fsm_download1 (vcasdo_fsm_t * fsm , ul_dbuff_t * data);

Arguments
fsm

FSM to work with
data

pointer to &ul_dbuff_t structure where downloaded data will be stored

vcasdo_read_multiplexor

Name
vcasdo_read_multiplexor — reads index and subindex from multiplexor part of
CANopen mesage

Synopsis
void vcasdo_read_multiplexor (const byte * mult , unsigned * index , unsigned * subindex);

Arguments
mult

pointer to the multiplexor part of CANopen mesage
index

pointer to place to store read index
subindex

pointer to place to store read subindex

vcasdo_error_msg

Name
vcasdo_error_msg — translates err_no to the string message

Synopsis
const char* vcasdo_error_msg (int err_no);

OCERA. IST 35102 136

Chapter 3. CAN/CANopen

Arguments
err_no

number of error, if FSM state == sdofsmError

vcasdo_init_fsm

Name
vcasdo_init_fsm — init SDO FSM

Synopsis
void vcasdo_init_fsm (vcasdo_fsm_t * fsm , unsigned srvcli_cob_id , unsigned clisrv_cob_id , unsigned
node);

Arguments
fsm

fsm to init
srvcli_cob_id

port to use for server->client communication (default 0x850 used if srvcli_cob_id ==0)
clisrv_cob_id

port to use for client->server communication (default 0x600 used if clisrv_cob_id ==0)
node

number of node on CAN bus to communicate with

vcasdo_destroy_fsm

Name
vcasdo_destroy_fsm — frees all SDO FSM resources (destructor)

Synopsis
void vcasdo_destroy_fsm (vcasdo_fsm_t * fsm);

Arguments
fsm

fsm to destroy

vcasdo_fsm_idle

Name
vcasdo_fsm_idle — sets SDO FSM to idle state

OCERA. IST 35102 137

Chapter 3. CAN/CANopen

Synopsis
void vcasdo_fsm_idle (vcasdo_fsm_t * fsm);

Arguments
fsm

SDO FSM

vcasdo_fsm_run

Name
vcasdo_fsm_run — starts SDO communication protocol for this FSM

Synopsis
void vcasdo_fsm_run (vcasdo_fsm_t * fsm);

Arguments
fsm

SDO FSM

vcasdo_fsm_abort

Name
vcasdo_fsm_abort — aborts SDO communication for this FSM, fill abort out_msg

Synopsis
void vcasdo_fsm_abort (vcasdo_fsm_t * fsm , __u32 abort_code);

Arguments
fsm

SDO FSM
abort_code

code to fill to out_msg

vcasdo_fsm_upload

Name
vcasdo_fsm_upload — starts upload SDO communication protocol for this FSM

OCERA. IST 35102 138

Chapter 3. CAN/CANopen

Synopsis
int vcasdo_fsm_upload (vcasdo_fsm_t * fsm , int node , unsigned index , byte subindex , unsigned srvcli_cob_id ,
unsigned clisrv_cob_id);

Arguments
fsm

SDO FSM
node

CANopen device node to upload from
index

uploaded object index
subindex

uploaded object subindex
srvcli_cob_id

port to use for server->client communication (default 0x850 used if srvcli_cob_id ==0)
clisrv_cob_id

port to use for client->server communication (default 0x600 used if clisrv_cob_id ==0)

Description
Returns not 0 if fsm- >out_msg contains CAN message to sent

vcasdo_fsm_download

Name
vcasdo_fsm_download — starts download SDO communication protocol for this FSM

Synopsis
int vcasdo_fsm_download (vcasdo_fsm_t * fsm , ul_dbuff_t * dbuff , int node , unsigned index , byte
subindex , unsigned srvcli_cob_id , unsigned clisrv_cob_id);

Arguments
fsm

SDO FSM
dbuff

pointer to a ul_dbuff structure to store received/transmitted data
node

CANopen device node to upload from
index

uploaded object index
subindex

uploaded object subindex
srvcli_cob_id

port to use for server->client communication (default 0x850 used if srvcli_cob_id ==0)
clisrv_cob_id

port to use for client->server communication (default 0x600 used if clisrv_cob_id ==0)

OCERA. IST 35102 139

Chapter 3. CAN/CANopen

Description
Returns not 0 if fsm- >out_msg contains CAN message to sent

vcasdo_fsm_taste_msg

Name
vcasdo_fsm_taste_msg — try to process msg in FSM

Synopsis
int vcasdo_fsm_taste_msg (vcasdo_fsm_t * fsm , const canmsg_t * msg);

Arguments
fsm

fsm to process msg
msg

tried msg

Return Value
zero if msg is not eatable for FSM

vcasdo_abort_msg

Name
vcasdo_abort_msg — translates SDO abort_code to the string message

Synopsis
const char* vcasdo_abort_msg (__u32 abort_code);

Arguments
abort_code

abort code

Header
vcasdo_msg .h

3.2.3.3. Object Dictionary API
This library supports object values storing and retrieving to/from Object Dictionary.

OCERA. IST 35102 140

Chapter 3. CAN/CANopen

struct vcaod_root_t

Name
struct vcaod_root_t — structure representing root of OD

Synopsis

struct vcaod_root_t {
gavl_node_t * my_root;

};

Members
my_root

object dictionary GAVL tree root

Header
vca_od.h

struct vcaod_object_t

Name
struct vcaod_object_t — structure representing single object in OD

Synopsis

struct vcaod_object_t {
gavl_node_t my_node;
unsigned index;
int subindex;
unsigned char data_type;
unsigned object_type;
int access;
unsigned flags;
char * name;
struct vcaod_object_t * subobjects;
int subcnt;
vcaod_dbuff_t value;
int valcnt;
sui_dinfo_t * dinfo;

};

Members
my_node

structure neccessary for storing node in GAVL tree, is NULL for subindicies
index

index of object
subindex

subindex of subobject or -1 if object is not subobject
data_type

can be one of (BOOLEAN, INTEGER8, ...)
object_type

type of object (DOMAIN=2, DEFTYPE=5, DEFSTRUCT=6, VAR=7, ARRAY=8, RECORD=9)
access

access attributes (RW, WO, RO, CONST)

OCERA. IST 35102 141

Chapter 3. CAN/CANopen

flags
flags can be: VCAOD_OBJECT_FLAG_MANDATORYobject is mandatory/optional, VCAOD_OBJECT_FLAG_PDO_MAPPING
object is supposed to be PDO mapped, VCAOD_OBJECT_FLAG_WEAK_DINFOdinfo
is weak pointer

name
textual name of object

subobjects
pointer to array of subobjects (definition==DEFSTRUCT, RECORD) or NULL

subcnt
number of subobjects

value
object values (definition==ARRAY) or single value (other definitions). If defini-

tion==ARRAY all values have the same length and they are stored sequently in
value

valcnt
number of values (definition==ARRAY)

dinfo
If object is PDO mapped or coming from HW, PDOProcessor holds reference to dinfo
object used for data transfer. In such a case only weak pointer to dinfo is stored
in OD object dinfo parameter. Weak in this context means that dinfo object clears
this reference Weak pointer is in OD to provide also SDO accesibility to such an
object. There are two possibilities on the SDO request. 1. object is PDO mapped, so
it is acessed using weak_dinfo, 2. object is not PDO mapped, so it is accesed using
functions vcaod_get_value and vcaod_set_value

Header
vca_od.h

_vcaod_find_object

Name
_vcaod_find_object — finds object in OD. This function is not a part of the SDO API

Synopsis
vcaod_object_t* _vcaod_find_object (vcaod_root_t * odroot , unsigned ix , unsigned subix , __u32 *
abort_code);

Arguments
odroot

object dictionary
ix

object index
subix

object subindex, ignored if object does not have subobjects
abort_code

Pointer to the abort code in case of an ERROR. It can be NULL, than it is ignored.
Abort codes are defined in CANopen standart 301 and can be translated to text
calling vcasdo_abort_msg .

OCERA. IST 35102 142

Chapter 3. CAN/CANopen

Returns
found object or NULL

Header
vca_od.h

vcaod_get_value

Name
vcaod_get_value — reads object value from Object Dictionary and copies them to
caller buffer

Synopsis
int vcaod_get_value (vcaod_root_t * odroot , unsigned ix , unsigned subix , void * buff , int len ,
__u32 * abort_code);

Arguments
odroot

object dictionary
ix

object index
subix

object subindex, ignored if object does not have subobjects
buff

buffer to write requested data
len

length of the buffer
abort_code

Pointer to the abort code in case of an ERROR. It can be NULL, than it is ignored.
Abort codes are defined in CANopen standart 301 and can be translated to text
calling vcasdo_abort_msg .

Returns
actual length of object in bytes negative value in case of an error

Header
vca_od.h

vcaod_set_value

Name
vcaod_set_value — copies object value from caller’s buffer to Object Dictionary

OCERA. IST 35102 143

Chapter 3. CAN/CANopen

Synopsis
int vcaod_set_value (vcaod_root_t * odroot , unsigned ix , unsigned subix , const void * buff , int
len , __u32 * abort_code);

Arguments
odroot

object dictionary
ix

object index
subix

object subindex, ignored if object does not have subobjects
buff

buffer containing written data
len

length of the data
abort_code

area to fill the abort code in case of an ERROR. It can be NULL, than it is ignored.
Abort codes are defined in CANopen standart 301 and can be translated to text
calling vcasdo_abort_msg .

Returns
actual length of object in bytes negative value in case of an error

Header
vca_od.h

vcaod_od_free

Name
vcaod_od_free — release all OD memory

Synopsis
void vcaod_od_free (vcaod_root_t * odroot);

Arguments
odroot

pointer to the object dictionary root

Header
vca_od.h

OCERA. IST 35102 144

Chapter 3. CAN/CANopen

vcaod_load_eds

Name
vcaod_load_eds — opens file and create new OD acording to its contens

Synopsis
int vcaod_load_eds (vcaod_root_t * odroot , const char* eds_file_name);

Arguments
odroot

root, which will contain loaded EDS
eds_file_name

name of file to load

Returns
zero in case of success

Header
vca_od.h

vcaod_dump_od

Name
vcaod_dump_od — debug function, dumps OD to log

Synopsis
void vcaod_dump_od (vcaod_root_t * odroot);

Arguments
odroot

root, which contains OD

Header
vca_od.h

vcaod_get_dinfo_ref

Name
vcaod_get_dinfo_ref — returns reference to dinfo corresponting to obj

Synopsis
sui_dinfo_t * vcaod_get_dinfo_ref (vcaod_object_t * obj , int create_weak);

OCERA. IST 35102 145

Chapter 3. CAN/CANopen

Arguments
obj

object from OD
create_weak

if there is no HW dinfo for object, creates temporary dbuff dinfo

Description
If obj allready has its &dinfo assigned vcaod_get_dinfo_ref returns this pointer, if
it is not function creates new &dinfo object.

Returns
pointer to associated dinfo with reference count increased or NULL if creation fails

Header
vca_od.h

3.2.3.4. canslave command line parameters
canslave command line arguments:
USAGE:
canslave [OPTION]

OPTIONS:
-h
--help this help screen
-d
--dump dumps loaded EDS back to log (debugging purposes)
-n
--node set node ID to n
-e
--eds EDS file name to load
-g
--log_level [n] sets how many log messages you will see.

0 - fatal errors only
1 - level 0 + errors
2 - level 1 + messages
3 - level 2 + info messages
4 - level 3 + debug messages

-v --verbose same as --log_level 3

3.2.3.5. CANmaster command line parameters
canmaster command line arguments:
CANMASTER - CANopen master
USAGE:
canmaster [OPTION]

OPTIONS:
-h
--help this help screen
--sync n
-i named pipe --in_pipe named pipe
-o named pipe --out_pipe named pipe

name of pipe for communication with monitoring program
default names are /tmp/canmond/candev-in and /tmp/canmond/candev-out
in_pipe is name of pipe where monitor feeds my input
out_pipe is name of pipe where i send answer to the monitoring application

-g
--log_level [n] sets how many log messages you will see.

0 - fatal errors only
1 - level 0 + errors
2 - level 1 + messages
3 - level 2 + info messages
4 - level 3 + debug messages
log level can be also set by environment variable CANMOND_LOG_LEVEL

-v --verbose same as --log_level 3

OCERA. IST 35102 146

Chapter 3. CAN/CANopen

3.2.4. Implementation issues

3.2.4.1. Architecture overview

computer

load/compile

load/compile
S DO request
P DO request
P DO notify
dinfo AP I
OD AP I

h
a

rd
w

a
re

C
A

N
 c

a
rd

C
A

N
 b

u
s

S DO F S M

P DO
processor

HW driver
module

E DS
C AN device
application

Object
dictionary
(OD)

C AN
driver

HDS

V
C

A

V
C

A

dinfo table

dinfo[0]

dinfo[n]

H
W

O
D

dinfo[0]

dinfo[n]

P DOP DO
S DOS DO
OD AP IOD AP I

OD AP IOD AP Idinfo AP Idinfo AP I

dinfo
AP I
dinfo
AP I

dinfo
AP I
dinfo
AP I

Figure 3-3. RT-CANopen device architecture

CANopen device components description
CAN driver

This part of CANopen device is different in hard and soft real-time spaces. If one
can use CAN device in RT-linux he should have CAN driver for RT-Linux. In soft
real-time space (also called user space) common CAN driver can be used. Naturally
every used CAN driver in any space should provide VCA interface facility.

CAN device application
This application actually makes CANmaster or CANslave. It also encapsulates all
threads and synchronization. Libraries alone are thread safe and also without any
synchronization inside. This approach gives us opportunity not to change libraries
when we migrate between soft and hard real-time spaces.

SDO FSM
SDO FSM (Service Data Object Finite State Machine) is a library providing us SDO
FSM data structure vcasdo_fsm_t and basic set of functions to proceed SDO com-
munication messages. (see Section 3.2.3.2, SDO FSM API).

PDO Processor
PDO Processor is responsible for proper PDO processing. Every PDO data are stored/retrieved
through sui_dinfo_t (see can/utils/suiut/sui_dinfo.h) structures in dinfo
table . So PDO processor don’t know where processed data originates. This makes
it simpler and safer.
PDO processor also generates dinfo table when CAN device comes to preopera-
tional state.

Object Dictionary OD
Object Dictionary is a place where all device data are stored. Every object can be
stored/loaded using its index and subindex (see Section 3.2.3.3, Object Dictionary
API).

HW driver module
This module shield HW dependent tasks from rest of CAN device. Every HW objects
should be exported and accessed through dinfo structures.
In user space is such a module realized as a dynamic link library, in kernel space
developer have to write kernel module.

OCERA. IST 35102 147

Chapter 3. CAN/CANopen

dinfo table
This is not really continuous piece of memory. During CAN device initialization
some dinfo structures are allocated. There are two kind of them. HW dinfos resists
in HW driver module and there are pointers to them from PDO processor and also
from OD. OD dinfos are used when OD object PDO mapping exists and there is not
HW dinfo to provide its value. In such a case OD dinfo is created for PDO processor.
All dinfo structures are reference counted, so they are destroyed automatically.

EDS
EDS means the Electronic Data Sheet, text file describing all objects in the slave
object dictionary and its mapping into the PDOs. It has normalized form according
to CiA Draft Standard 301 . EDS is parsed in order to create slave OD repre-
sentation in CANopen device.

HDS
HDS means the Hardware Definition Sheet, a text file describing linking of HW din-
fos, from HW driver module, with appropriate object index and subindex in OD. It
grants correspondence between the CANopen object value and technological process
data from the hardware. For example a thermometer with the analog output con-
nected to PC A/D converter card needs handler which reads temperature from card
output port and gives it to device OD. The slave designer have to write this handler
dinfo code while the CAN device source code remains always the same.

3.2.4.2. CANopen slave
As can be seen on Figure 3-3 CAN driver sends the CAN messages to device applica-
tion via VCA. Messages of two main categories are handled in application, process data
objects (PDO) and service data objects (SDO, NMT, SFO).
The process data (PDO objects) are handled separately of the SDO with higher priority.
RPDOs (Receive PDO objects) are sent to PDO processor immediately after arriving. It
sets appropriate value in OD and also in hardware, if it is defined in HDS. In case of
RTR processor add response PDO to waiting PDO list and notify application by calling
registered callback function.
TPDOs (Transmit PDO objects) are sent as response to the SYNC object or other device
specific event such timer or object value change. In such a case PDO processor add
response PDO to waiting PDO list and notify application by calling registered callback
function. Application is responsible for sending CAN messages from waiting list to CAN.
All process object values, coming from hardware or not, are accessed via dinfo structures.
This gives us uniform interface to get or set its value. Only if non process data object
(not PDO mapped or not coming from HW) is accessed via SDO, than it is retrieved by
SDO FSM directly from OD.
SDO objects are sent to the SDO FSM. It communicates with OD and prepares response
messages for SDO requests. CAN device application only send SDO response to CAN
bus if SDO FSM returns any.
Object Dictionary shields user from internal data structures by introducing functions
vcaod_get_value() and vcaod_set_value() . This way can be any object changed.
OD objects can be loaded onto OD from EDS file calling vcaod_load_eds() . For kernel
space solutions OD with its content should be compiled from C code. This is prepared
but not implemented yet.

3.2.4.3. CANopen master
CANopen master architecture is very similar to the CANopen clave one. The main dif-
ference lies in OD. CANmaster can have copy of all slaves OD in its memory. This copies
can be loaded from slaves issuing SDO commands in preoperational state. This feature
is not implemented yet.

OCERA. IST 35102 148

Chapter 3. CAN/CANopen

Second difference lies in fact that CANmaster can communicate with hierarchically
higher application via named pipes. This gives us opportunity to communicate from
application in user space with master in RT-linux space through /dev/rtfxx/. See Section
3.3, CAN monitor.

3.2.5. Tests
Only soft real-time solution was tested yet. Only functionality was tested, no heavy tests
were made. All tests were performed during CanMonitor testing (see CanMonitor tests).

3.2.6. Examples
To make candevice programs type make in ocera/components/comm/can/candev di-
rectory.

3.2.7. Installation instructions
To install canmaster and canslave simply copy this two files from ocera/components/comm/can/_compiled/
to desired directory. Do not forget valid *.EDS file to test canslave properly.

3.3. CAN monitor
CAN monitor is a component used to monitor CAN/CANopen traffic and also to give
user opportunity to involve to it. This component consist of three programs canmond,
testclient and Section 3.3, CAN monitor.

3.3.1. Summary
Name of the component

CanMonitor
Author

Frantisek Vacek
Reviewer

not validated
Layer

High-level
Version

0.2 Beta
Status

Beta
Dependencies

canmaster and TCP/IP.
Release date

February 2004

3.3.2. Description
Can monitor component consists of three parts. CAN proxy - canmond , console canmond
client testclient and Java GUI canmond client CanMonitor .

3.3.2.1. canmond - CAN/CANopen proxy
Canmond is the heard of component. It works like CAN proxy, translates every CAN
message to the textual, platform independent form and send it to the all connected ap-
plications. TCP connection allows clients to be placed wherever on Internet. One can

OCERA. IST 35102 149

Chapter 3. CAN/CANopen

also read/send CAN messages using a Java applet on his HTML browser. It needs run-
ning canmaster connected to it. Canmond communicates with canmaster via named
pipes, so canmaster can be placed in kernel space and use /dev/rtfxx or in user space
and use arbitrary couple of named pipes.

c anmas ter

C anMonitor #1

C anMonitor #2

testclient #1

application #1

c anmod

T C P /IP

named
pipes

Figure 3-4. Connecting canmond

3.3.2.2. testclient
Testclient is an simple console based application for communication with canmond . It
provides us basic operation on CAN/CANopen bus like sending rough CAN messages or
SDO communication.

3.3.2.3. CanMonitor
CanMonitor is a GUI Java based application connected to the canmond . Like testclient
provides us basic CAN/CANopen communication primitives. If one has CANopen device
EDS (Electronic Data Sheet), he can read/write CANopen objects just by clicking on the
mouse.

Figure 3-5. CAN monitor CAN messages window
CAN monitor can serve as application showing all messages on CAN bus. You can also
send a raw CAN messages to the CAN bus clicking on Send button.

OCERA. IST 35102 150

Chapter 3. CAN/CANopen

Figure 3-6. The Object Dictionary tree view
With loaded EDS you can upload/download CANopen objects values straight to the de-
vice object dictionary (OD).

Figure 3-7. The CanMonitor configuration dialog
CanMonitor havs GUI configuration dialog. It can be also configured from command
line.

3.3.3. API / Compatibility

3.3.3.1. canmond
Command line arguments:
CANMOND - CAN monitor server
canmond [OPTION]

OPTIONS:
-h
--help this help screen
-v --verbose

OCERA. IST 35102 151

Chapter 3. CAN/CANopen

-p
--port [n] sets port where the server listens (default 10001)
-i named pipe --candev_in named pipe
-o named pipe --candev_out named pipe

name of pipe for communication with monitored CAN device
default names are /tmp/canmond/candev-in and /tmp/canmond/candev-out
if pipes don’t exist, canmond creates the new ones
canmond writes data to the candev-in pipe

-g
--log_level [n] sets how many log messages you will see.

0 - fatal errors only
1 - level 0 + errors
2 - level 1 + messages
3 - level 2 + info messages
4 - level 3 + debug messages
log level can be also set by environment variable CANMOND_LOG_LEVEL

3.3.3.2. testclient
Command line arguments
TESTCLIENT - canmond client
testclient [OPTION]

OPTIONS:
-h
--help this help screen
-v
--verbose tverbose
-a
--host [n] sets the IP address where the server listens default is "127.0.0.1"
-p
--port [n] sets port on which server listens default 10001

COMMANDS:
sendmsg id [byte1 byte2 ...] - sends CAN message (short version)
send {CANDTG flags cob timestamp id [byte_1 .. byte_n]}

- sends CAN message (detailed version)
{SDOR UPLOAD server_port client_port node index subindex}
- uploads CANopen object from device object dictionary
server_port, client_port can be 0 for default values (0x580, 0x600)
{SDOR DOWNLOAD server_port client_port node index subindex [byte_1 ... byte_n]}
- downloads CANopen object to device object dictionary

sdo toggles SDO datagrams only, default is OFF
q quits

3.3.3.3. CanMonitor
Command line arguments
loading config from ’/home/fanda/.canmonitor/CanMonitor.conf.xml’
USAGE: cammonitor -a host -n node -e EDS_file_name

3.3.4. Implementation issues

3.3.4.1. canmond
Any application can attach itself to the canmond . It works like TCP server listening on
port 10001. If an application opens socket to the server, it can send/receive text messages
described in following section.
canmond has simple text API to communicate with its clients. API consist of following
structures:

OCERA. IST 35102 152

Chapter 3. CAN/CANopen

Rough CAN message format
{CANDTGflags cob timestamp id [data_byte_1 .. data_byte_n] }

flags, cob, timestamp, id and data_byte_1 ... data_byte_n are num-
bers in hexadecimal format. Number of bytes should be less or equal 8 to fit single
CAN message.
Example: {CANDTG 0 0 0 189 [0F]}

SDO upload request
{SDOR UPLOADserver_port client_port node index subindex }

Requests upload of object[index.subindex] from device with CANopen address
node . Uploaded data are returned in SDOC UPLOADmessage.
server_port and client_port could be 0. In that case the default values, 0x580
+ node_id for the server_port and 0x600 + node_id for the client_port are used.
If object on desired index do not have sub-indexes, subindex parameter is ignored.
Example: {SDOR UPLOAD 0 0 9 2000 1} - request for upload of index 0x2000,
subindex 0x1 of node 9.

SDO upload confirmation
{SDOC UPLOADserver_port client_port node index subindex [data_byte_1
... data_byte_n] }

Confirmation message for previously requested CANopen object upload. Uploaded
data are returned as a byte array [data_byte_1 ... data_byte_n] . Number of
returned bytes can be greater than 8 if uploaded object is larger than 8 bytes. For
description of other parameters see SDO upload request
Example: {SDOC UPLOAD 580 600 9 2000 1 [0]} - answer for the upload re-
quest from the paragraph above.

SDO download request
{SDOR DOWNLOADserver_port client_port node index subindex [data_byte_1
... data_byte_n] }

Requests download of the byte array [data_byte_1 ... data_byte_n] to the
CANopen device. For description of other parameters see SDO upload request
Example: {SDOR DOWNLOAD 0 0 9 2100 1 [FF]} - request for download one byte
0xFF to the index 0x2000, subindex 0x1 of node 9.

SDO download confirmation
{SDOC DOWNLOADserver_port client_port node index subindex }

Confirmation message for previously requested CANopen object download. For de-
scription of other parameters see SDO upload request
Example: {SDOC DOWNLOAD 580 600 9 2100 1 }- answer for the download re-
quest from the paragraph above.

Communication error and abort messages
Upon some circumstances, CANopen device aborts SDO communication. Also a com-
munication error can occur.
In case of aborted communication canmond includes word ’ABORT’ , abort code (de-
fined in CiA Standard 301) and textual representation of that code in place of re-
turned data byte array.
Example: {SDOC DOWNLOAD 580 600 9 2100 2 ABORT 6090011 ’Sub-index
does not exist.’}

OCERA. IST 35102 153

Chapter 3. CAN/CANopen

In case of communication error canmond includes word ’ERROR’ error code (de-
fined in OCERA vcasdo_fsm.h) and textual representation of that code in place of
returned data byte array.
Example: {SDOC UPLOAD 580 600 9 2000 1 ERROR 1 ’SDO transfer time
out.’}

3.3.5. Tests
Component was tested with real CANopen device WAGO 750-307.

C AN

T C P -IP

WAG O 750-307
c anmond
c anmas ter

C anMonitor

Figure 3-8. CanMonitor testing

All VCA sources were compiled by GNU C ver. 3.2 and linked with glibc ver. 2.2.5.
All components were also tested with canmaster and canslave components. In follow-
ing example is written how.

3.3.6. Examples

3.3.6.1. Example 1 - connecting to real CANopen device
Make sure, that CAN driver is installed and works properly. Check that real CANopen
device is connected to your CAN card.
Type make in ocera/components/comm/can directory to make all necessary programs.
Than open two terminal windows.
In first window launch canmaster by typing canmaster .
You should see something like this

[fanda@mandrake bin]$./canmaster
CANMASTER - CANopen master
canmaster: entering state STATE_INITIALIZING
canmaster: entering state STATE_PREOPERATIONAL
canmaster: entering state STATE_OPERATIONAL

Than you should launch canmond on the same machine.
[fanda@mandrake bin]$ canmond
CANMOND - CAN monitor server

If you have a graphical environment with Java installed, you can launch CanMonitor
issuing:

[fanda@mandrake bin]$ canmonitor -e nascan.eds
loading config from ’/home/fanda/.canmonitor/CanMonitor.conf.xml’
connecting to localhost/127.0.0.1
connected OK

If everything works right, you should see application window like one in section Can-
Monitor. Now you can load device EDS file and upload/download CANopen objects.

OCERA. IST 35102 154

Chapter 3. CAN/CANopen

Instead or in addition to CanMonitor you also launch testclient program either on
the same machine or on other one. With testclient you can’t use EDS file but in other
hand you don’t need graphical environment.

[fanda@mandrake canmond]$ testclient -a arnost
testclient -a arnost
finding arnost:1001 ...
found address: arnost - 147.32.84.158
connecting 147.32.84.158:1001 ...
OK
got HELLO from canmond.

You can also use rdln utility (also part of the OCERA project) in directory ocera/components/comm/can/utils/rdln
to give the testclient readline facility like command history, BASH like line editing
etc..

[fanda@mandrake canmond]$ rdln testclient -a arnost

3.3.6.2. Example 2
In this example canslave is tested, that means that you do not need any real CANopen
device. Tested canslave can resist on same computer as canmaster on can be on other
computer connected by CAN bus. If both programs resist on same computer make sure
that CAN driver lincan was configured to make echo of sent CAN messages to all other
who have open CAN driver on same computer.
Type make in ocera/components/comm/can directory to make all necessary programs.
Than open four terminal windows (Four windows using is just for demonstration pur-
poses).
In first window launch canslave . You can launch more canslaves with different node
numbers. Do not forget introduce *.EDS file name after -e switch in command line.
You should see something like this

[fanda@mandrake bin]$ canslave -e nascan.eds
CANSLAVE - CAN slave
canslave: Opening CAN driver: /dev/can0
canslave: Opening EDS: nascan.eds
canslave: entering state STATE_INITIALIZING
canslave: SYNC COB_ID: 0, SYNC period: 0
canslave: entering state STATE_PREOPERATIONAL
canslave: entering state STATE_OPERATIONAL

In second window launch canmaster .
You should see something like this

[fanda@mandrake bin]$./canmaster
CANMASTER - CANopen master
canmaster: entering state STATE_INITIALIZING
canmaster: entering state STATE_PREOPERATIONAL
canmaster: entering state STATE_OPERATIONAL

In third window launch canmond .
You should see something like this

[root@arnost canmond]# ./canmond
CANMOND - the can monitor server

Than you can launch testclient or CanMonitor or both of them like in previous
example to work with canslave OD or to see CAN traffic.

OCERA. IST 35102 155

Chapter 3. CAN/CANopen

3.3.7. Installation instructions
Program from this package does not need special installation. They can run from any
directory. Just type make in ocera/components/comm/can/canmond directory. And
copy desired files fromocera/components/comm/can/_compiled directory. If you want
to compile only one component, type make in component’s directory.
Restrictions on versions of GNU C or glibc are not known in this stage of project.
Java SDK ver. 1.4 or above is recommended.

OCERA. IST 35102 156

Chapter 4. Verifications

4.1. CAN model by timed automata

4.1.1. Sumary
Name of the component

CAN model by timed automata /Petri Nets
Description

This component is theoretical study offering methodology tool support for anal-
ysis of distributed system consisting of n independent processors and determin-
istic communication bus (CAN). In order to verify distributed RT system, appli-
cation designer needs to create a model of application tasks and to interconnect
this model with the communication bus model provided by this component. Finally
he/she needs to define system properties to be verified (deadlock, missed deadline
etc.). This component can be used either in a design phase or it can be used to verify
existing implementation.

Author
Jan Krakora, Zdenek Hanzalek

Reviewer
not validated

Layer
High-level available

Version
0.1 alfa

Status
Alfa

Dependencies
Not validated

Release date
2003-04-07

4.1.2. Description

4.1.2.1. Problem statement
This section deals with a design conception of theoretical study offering methodology tool
supporting analysis of distributed Real Time (RT) systems. Figure 4-1 illustrates mayor
topic of verification of distributed systems . The figure shows a control system consisting
of n independent processors and CAN communication bus. Let us consider the parallel
running applications in the real-time operating system (RTOS) environment and further
let us consider the communication protocol behaving in Real-time manner.
The crucial problem is whether the general real-time control system (RTCS) [Butta-
zoo97] behaves in RT manner. This problem can be split into three subproblems that
can be futher composed together:

• application SW (modeled by application developer)
• RTOS (study of preemptive and cooperative schedulers) - see "Verification of coopera-

tive scheduling and interrupt handlers" component
• RT communication - CAN (Medium Access Control modeling) - addressed in this com-

ponent

157

Chapter 4. Verifications

Coresponding three sub models can be futher combined to create RTCS model and it’s
possible behavior can be defined. Desired behavior of the RTCS has to be specified in the
form of properties (e.g. deadlock, missed deadline, ...).

Processor 1

Environment

Sensor
control

Actuator
control

Processor 2 Processor 3 Processor 4

RTCS

e.g. CAN bus

10
m

s

2ms
1m

s

Interface
Application
Bus
RTOS

Legend

Figure 4-1. Real time control system structure with denotation of
computation/communication times

Goal of "Verification of cooperative scheduling and interrupt handlers" and this compo-
nent is to provide:

• model of RTOS and CAN
• develop examples of typical applications
• provide methodology for model checking of RTCS
To resolve the above mentioned problem we use a mathematical formalisms based on:

• system specification by means of communicating automata
• design system behavior formulated by means of CTL
• verification algorithm
While using this component the application developer can verify his RT applications
that are communicating via CAN by checking of properties like for example whether
all task deadlines are satisfied or whether the message is received before another one.
This approach is an alternative to the one known as VOLCANO [Tindell94], and it offers
more general framework for verification. Specifically it can be combined with RTOS and
application SW.

4.1.2.2. CAN bus description
This section introduces a basic terminology futher used in CAN model. It can be skiped
by the reader familier with this technology.
Controller Area Network (CAN) [CAN01] is a serial bus system especially suited to in-
terconnect smart devices to build smart systems or sub-systems.

4.1.2.2.1. Real-time data transmission
In real-time processing the urgency of messages to be exchanged over the network can
differ greatly: a rapidly changing dimension, e.g. engine load, has to be transmitted more
frequently and therefore with less delays than other dimensions, e.g. engine tempera-
ture.
The priority at which a message is transmitted compared to another less urgent message
is specified by the identifier of each message. The priorities are laid down during system
design in the form of corresponding binary values and cannot be changed dynamically.
The identifier with the lowest binary number has the highest priority.

OCERA. IST 35102 158

Chapter 4. Verifications

Bus access conflicts are resolved by bit-wise arbitration on the identifiers involved by
each station observing the bus level bit for bit. This happens in accordance with the
"wired and" mechanism, by which the dominant state overwrites the recessive state. The
competition for bus allocation is lost by all those stations (nodes) with recessive trans-
mission and dominant observation. All those "losers" automatically become receivers of
the message with the highest priority and do not re-attempt transmission until the bus
is available again.
Transmission requests are handled in the order of the importance of the messages for
the system as a whole. This proves especially advantageous in overload situations. Since
bus access is prioritized on the basis of the messages, it is possible to guarantee low
individual latency times in real-time systems.

4.1.2.2.2. Message frame formats
The CAN protocol supports two message frame formats, the only essential difference
being in the length of the identifier. The so-called CAN standard frame, also known as
CAN 2.0 A, supports a length of 11 bits for the identifier, and the so-called CAN extended
frame, also known as CAN 2.0 B, supports a length of 29 bits for the identifier.

• CAN standard frame
A message in the CAN standard frame format begins with the start bit called "Start Of
Frame (SOF)", this is followed by the "Arbitration field" which consist of the identifier and
the "Remote Transmission Request (RTR)" bit used to distinguish between the data frame
and the data request frame called remote frame. The following "Control field" contains
the "IDentifier Extension (IDE)" bit to distinguish between the CAN standard frame and
the CAN extended frame, as well as the "Data Length Code (DLC)" used to indicate the
number of following data bytes in the "Data field". If the message is used as a remote
frame, the DLC contains the number of requested data byte. The "Data field" that follows
is able to hold up to 8 data byte. The integrity of the frame is guaranteed by the following
"Cyclic Redundant Check (CRC)" sum. The "ACKnowledge (ACK) field" compromises the
ACK slot and the ACK delimiter. The bit in the ACK slot is sent as a recessive bit and is
overwritten as a dominant bit by those receivers which have at this time received the data
correctly. Correct messages are acknowledged by the receivers regardless of the result of
the acceptance test. The end of the message is indicated by "End Of Frame (EOF)". The
"Intermission Frame Space (IFS)" is the minimum number of bits separating consecutive
messages. If there is no following bus access by any station the bus remains idle.

• CAN extended frame
A message in the CAN extended frame format is likely the same as a message in CAN
standard frame format. The difference is the length of the identifier used. The identifier is
made up of the existing 11-bit identifier (so-called base identifier) and an 18-bit extension
(so-called identifier extension). The distinction between CAN standard frame format and
CAN extended frame format is made by using the IDE bit which is transmitted as dom-
inant in case of a frame in CAN standard frame format, and transmitted as recessive in
case of a frame in CAN extended frame format. As the two formats have to co-exist on one
bus, it is laid down which message has higher priority on the bus in the case of bus access
collision with different formats and the same identifier / base identifier: The message in
CAN standard frame format always has priority over the message in extended format.

CAN controllers which support the messages in CAN extended frame format are also
able to send and receive messages in CAN standard frame format. When CAN con-
trollers which only cover the CAN standard frame format are used in one network, then
only messages in CAN standard frame can be transmitted in the entire network. Mes-
sages in CAN extended frame format would be misunderstood. However there are CAN
controllers which only support CAN standard frame format but recognize messages in
CAN extended frame format and ignore them (version 2.0 B passive).

OCERA. IST 35102 159

Chapter 4. Verifications

4.1.2.2.3. Detecting and signalling errors
Unlike other bus systems, the CAN protocol does not use acknowledgement messages
but instead signals any errors immediately as they occur. For error detection the CAN
protocol implements three mechanisms at the message level:

• Cyclic Redundancy Check (CRC).
The CRC safeguards the information in the frame by adding redundant check bits at the
transmission end. At the receiver these bits are re-computed and tested against the re-
ceived bits. If they do not agree there has been a CRC error.

• Frame check.
This mechanism verifies the structure of the transmitted frame by checking the bit fields
against the fixed format and the frame size. Errors detected by frame checks are designated
"format errors".

• ACK errors.
As already mentioned frames received are acknowledged by all receivers through positive
acknowledgement. If no acknowledgement is received by the transmitter of the message
an ACK error is indicated.

The CAN protocol also implements two mechanisms for error detection at the bit level:

• Monitoring.
The ability of the transmitter to detect errors is based on the monitoring of bus signals.
Each station which transmits also observes the bus level and thus detects differences be-
tween the bit sent and the bit received. This permits reliable detection of global errors and
errors local to the transmitter.

• Bit stuffing.
The coding of the individual bits is tested at bit level. The bit representation used by
CAN is "Non Return to Zero (NRZ)" coding, which guarantees maximum efficiency in bit
coding. The synchronization edges are generated by means of bit stuffing. That means after
five consecutive equal bits the transmitter inserts into the bit stream a stuff bit with the
complementary value, which is removed by the receivers.

If one or more errors are discovered by at least one station using the above mechanisms,
the current transmission is aborted by sending an "error flag". This prevents other sta-
tions accepting the message and thus ensures the consistency of data throughout the
network. After transmission of an erroneous message that has been aborted, the sender
automatically re-attempts transmission (automatic re-transmission). There may again
competition for bus allocation.
However effective and efficient the method described may be, in the event of a defec-
tive station it might lead to all messages (including correct ones) being aborted. If no
measures fr self-monitoring were taken, the bus system would be blocked by this. The
CAN protocol therefore provides a mechanism to distinguishing sporadic errors from
permanent errors and local failures at the station. This is done by statistical assess-
ment of station error situations with the aim of recognizing a stations own defects and
possibly entering an operation mode where the rest of the CAN network is not nega-
tively affected. This may go as far as the station switching itself off to prevent messages
erroneously from being recognized as incorrect .

4.1.3. API/Compatibility
Not applicable.

OCERA. IST 35102 160

Chapter 4. Verifications

4.1.4. Implementation issues

4.1.4.1. Bit-wise arbitration model
The model of CAN arbitration designed in timed automata [UPPAAL00] is shown in Fig-
ure 4-3. The model describes MAC mechanism for one message accessing the bus. The
location no_trans_needed represents a situation when the arbitration model is waiting
for trans_request from the application process. The locations send_bit_to_bus, listen_bus,
check_next_bit represent the arbitration process. The locations request_denied and re-
quest_success give result of the arbitration process.

Arbitration field

Start-of-Frame-Bit (SOF)

CAN Data Frame (length Cm[s])

Control, Data, CRC, ACK etc.

Figure 4-2. CAN message frame format

After processing of the Start of Frame Bit (SOF) (see the CAN message frame for-
mat in Figure 4-2) the first bit from the arbitration filed is sent to the bus (transi-
tion send_bit_to_bus -> listen_bus). At the same time the transmitting processor senses
the bus and both transmitted bit (local variable id) and sensed bit (global variable
signal) are compared. If they are identical and the end of the Arbitration field (nsigi
states for the length of the Arbitration field) was not reached the next bit is proceeded
(check_next_bit location) when nominal bit-time elapses (deterministically given as tbit
constant). If the sensed bit is not identical to the transmitted one, the transmission is
denied (request_denied location). If they are identical and the end of the Arbitration field
was reached the processor wins the arbitration (request_success location). The CAN Ar-
bitration model includes the information about the duration of each bit-time given by
invariant t <= tbit in listen_bus location and guards t >= tbit, t>= 0 on outgoing tran-
sitions. When tbit is not deterministic, i.e. tbit is bounded on interval <tbit_l,tbit_u>,
then the duration of each bit-time given by invariant t <= tbit_u and guard t >= tbit_l .

send_bit_to_bus

listen_bus

t<=tbit

check_next_bit

request_denied request_success

no_trans_needed

signal[i]:=id[i]*signal[i], t:=0

t>=tbit, i<(nsigi-1), id[i]==signal[i]

t>=0, id[i]!=signal[i] t>=tbit, i==(nsigi-1), id[i]==signal[i]

trans_request?

i:=i+1

Figure 4-3. Arbitration model (in UPPAAL like notation)

4.1.4.2. Transceiver model
Above explained bit-wise arbitration is a part of the transceiver model.
The implementation of the complete transceiver model is depicted in Figure 4-4 , and its
interconnection with other automata is shown in Figure 4-6 . It is composed of the three
sections:

• the arbitration section described already in Figure 4-3

OCERA. IST 35102 161

Chapter 4. Verifications

• synchronisation section (waiting_for_free_bus->send_bit_to_bus transition) that is used
to synchronize all transmitting processors prior to arbitration (this part realises
broadcast communication) and

• data transmission section given by trans_section, trans_section_finished and trans_finished
locations.

The function of transceiver is the following: after receiving the transmission request, the
processor is in the waiting state (waiting_for_free_bus) until the bus is free. Bus becomes
idle, the arbitration processes start (synchronization by urgent broadcast_synch chan-
nel). If the transmission was denied (trans_denied location), the transmission request is
immediately repeated and the processor is waiting for free bus again (waiting_for_free_bus
location). Otherwise the processor message is sent. The duration of message is given by
deterministic time Cm. When the transmission is finished (trans_section_finished) the
bus becomes idle (bus_trans_finished channel) and the application process is informed
about the end of transmission (trans_compl_status channel).

send_bit_to_bus

listen_bus
t<=tbit

check_next_bit

request_denied request_success

trans_begun
t <= Cm

no_trans_needed

trans_section_finished

trans_finished

waiting_for_free_bus

signal[i]:=id[i]*signal[i], t:=0

t>=tbit, i<(nsigi-1),
id[i]==signal[i]

t>=tbit,
id[i]!=signal[i]

t>=tbit,
i==(nsigi-1),
id[i]==signal[i] t:=0

i:=i+1

trans_vote++,
t_response_time := 0

trans_request?

t >= Cm

bus_trans_finished!
signal[0]:=1, signal[1]:=1, signal[2]:=1

trans_compl_status!

i:=0
bus_broadcast_chan?

trans_vote++,
t_response_time := 0

Figure 4-4. Transceiver model

4.1.4.3. Bus model
Figure 4-5 depicts the physical bus model. The model is in idle location when there is
no activity on the bus and it is in busy location when any processor transmits. The
trans_vote global variable is used to detect that at least one processor is willing to
start the transmission. If this is the case than the global synchronization is realized
via bus_broadcast_chan from the bus model.

idle

busy

bus_trans_finished?
trans_vote>0
bus_broadcast_chan!
trans_vote:=0

Figure 4-5. Bus model

4.1.5. Tests
Not applicable.

OCERA. IST 35102 162

Chapter 4. Verifications

4.1.6. Examples

4.1.6.1. Case study 1 - Application process model
As seen from Figure 4-6the case study assumes 4 processors to be connected via CAN.
Each processor is running one application process transmitting the messages of the
same identifier. The application processes 1, 2, and 3 are periodic processes transmitting
messages with identifier 1, 2, and 3 respectively. The application process 4 is a sporadic
process transmitting the lowest priority message with identifier 4.

application
process 1

transm iter 1

bus

application
process 2

transm iter 2

application
process 3

transm iter 3

!

processor 1

application
process 4

transm iter 4

CHANNEL LEGEND

! -trans_request

" -trans_finished_ack

-bus_trans_finished

$ -bus_broadcast_chan

"

$

! "

$

! "

$

! "

$

processor 2 processor 3 processor 4

Figure 4-6. Case study system configuration

The periodic application process, with period Tm, is depicted in Figure 4-7. Afterwards
each message is delayed by an operating system delay, the time between zero and Ji
(called jitter in [Tindell94]). Then the transmission request is done by trans_request
channel. When the message is transmitted the process is informed by trans_compl_status
channel. Location no_transmission_activity represents a situation when the process does
not perform transmission, i.e. it performs for example computations. Location init_location
starts the first task period, delayed by time between zero and Tm in order to represent
the phase shift of the task.

no_trans_activity
t_period<=Tm

message_queueing
t_jitter <= Jm

transmission

trans_finished

init_location
t_period<=Tm

t_period == Tm

t_period := 0,
t_jitter := 0,
t_response_time := 0

t_jitter >= 0
t_jitter:=0

trans_request !
trans_compl_status ?

t_response_time := 0 t_period:=0,
t_jitter:=0,
t_response_time := 0

t_period>=0

Figure 4-7. Periodic application process model

The sporadic process model is depicted in Figure 4-8 . Locations no_trans_activity_1
and no_trans_activity_2 represent a situation when the process does not perform any
transmission. The process resides an arbitrary time in location no_trans_activity_1, then
the transmission request is generated and when the message is transmitted the process
is informed by trans_compl_status channel, and then the process has no influence on the
bus. Local variable t_response_time in both models is used in properties to be verified.

OCERA. IST 35102 163

Chapter 4. Verifications

no_trans_activity_1

transmission

trans_finished

no_trans_activity_2

trans_request!
t_response_time := 0

trans_compl_status?

t_response_time := 0

Figure 4-8. Sporadic application process model

4.1.6.1.1. Comparison with traditional approach
The section presents the case study with periodic and sporadic processes including com-
parison with Tindell’s approach (assuming 125kbps baudrate).
Timing and logical properties to be verified can be for example the following ones:

1. Is the system deadlock free?
2. Is there any state in which processor 1 and processor 2 are in the data transmission

section?
3. Is there any situation in which the highest priority message does not win the arbi-

tration?
4. Are all periodic messages transmitted prior to their deadlines?
5. What is the worst-case response time Rm of the message with identifier m (for m=1,

2 or 3)?
These properties are formulated in the temporal logic based formalism used in the UP-
PAAL verification tool UPPAAL [UPPAAL00] as follows:

1. A [] (not deadlock)
2. E <> (Transceiver_1.request_success and Transceiver_2.request_success)
3. E <> (Transceiver_1.request_denied)
4. A [] (Process_m.trans_finished) & (Process_m.t_response_time < Deadline)
5. A [] (Process_m.trans_finished) & (Process_m.t_response_time < Rm)

The verification results of timed automata tool are as follows:

1. Property is satisfied
2. Property is not satisfied
3. Property is not satisfied
4. See the section bellow
5. Rm found by iteration (using bisection) see the section bellow

We assume the configuration depicted in Figure 4-6 where each processor is running
one application process transmitting one type of message (the message ID is equal to
the application ID is equal to the processor ID). Table 4-1, Process parameters table
shows parameters of three periodic and one sporadic process. The aim of the case study
is twofold:

• to verify whether the response time satisfies a given deadline of the message (corre-
sponding to property 4)

• to find the worst-case response time Rm iteratively by repeating the verification for
different values of deadline (corresponding to property 5).

Table 4-1. Process parameters table

Msg. ID Type Period
Tm[usec]

Deadline[usec] Cm[usec]

1 periodic 2000 2000 504
2 periodic 3000 3000 504
3 periodic 5000 4000 504
4 sporadic - - 1040

OCERA. IST 35102 164

Chapter 4. Verifications

Table 4-2, Results of the experiment related to property 4 and 5 shows verification results
of the experiment related to property 4 and 5 without the operating system delay. The
response time of each periodic message is shorter then corresponding deadline assuming
also relatively long sporadic message.

Table 4-2. Results of the experiment related to property 4 and 5

Msg. ID Jm formula 4 result Rm
1 0 satisfied 1544
2 0 satisfied 2048
3 0 satisfied 3056
4 - - -

Table 4-3, Results of the experiment related to property 4 and 5 with the operating system
delay shows results of the experiment related to property 4 and 5 with the operating
system delay Jm.

Table 4-3. Results of the experiment related to property 4 and 5 with the oper-
ating system delay

Msg. ID Jm formula 4 result Rm
1 456 satisfied 2000
2 0 satisfied 2552
3 0 satisfied 3056
4 - - -

Values of Rm in Table 4-2, Results of the experiment related to property 4 and 5, Table
4-3, Results of the experiment related to property 4 and 5 with the operating system delay
are identical to those calculated by iterative algorithm [Tindell94] based on equation

R_i = J_i + w_i + C_i

R i= Jiw iCi

Figure 4-9. Worst-case response time equation

where

w_m = B_m + sum from {forall j in hp(m) } {{ lceil {w_m + J_j +%tau_bit} over T_j rceil }C_j }

w m=B m ∑
∀ j ∈hp m

⌈
w m J jbit

T j

⌉C j

Figure 4-10. Worst-case queueing delay equation

The term Bm presents the longest time that the given message m can be delayed by
lower priority messages, the taubit is the bit time of the bus. The set hp(m) is the set of
messages of higher priority then message m.

4.1.6.2. Case study 2 - Anti-lock Braking System
This case study is example of distributed system containing timed automata models, in-
cluding the CAN model, the RT operating system model [Wasznio03] and the Anti-lock
Brake System [Kerim00] realised as application process model (see Figure 4-11). The
system consists of two processors (i.e. MCUs) with pre-emptive RTOS (e.g. OSEK), com-
municating via CAN. The first processor (see Figure 4-14), connected to the brake pedal
(see Figure 4-12), detects the pedal position and transmits corresponding messages to
the second processor. The second one (see Figure 4-14) acquires information about ac-

OCERA. IST 35102 165

Chapter 4. Verifications

celeration/deceleration from an acceleration sensor, it receives messages from the first
processor, and calculates and accomplishes a control action following rules of ABS.

Processor 1 Processor 2

CAN bus

inputs

inputs

outputs

brakes

acc.sensorbrake pedal

CAR
Environment

RTCS

Figure 4-11. Structure of the distributed system - ABS control

The timed automaton in Figure Figure 4-13 models typical situation - the pedal is
pressed and then it is released after some undefined time. Model consists of three loca-
tions. Variable BPPEvent is set when the pedal is pressed (bPedalInit -> bPedalPressed)
and variable BPREvent is set when when it is released (bPedalPressed -> bPedalRe-
leased). Variable BPPEvent is read by read by a timed automaton model of Task1 (see
Figure Figure 4-15) and variable BPREvent is read by read by a timed automaton model
of Task2 (see Figure Figure 4-16).

pedal pressed

pedal released

Figure 4-12. Two state brake pedal

bPedalInit

bPedalPressed

bPedalReleased

BPPEvent:=1,
tBrakeActivityDelay:=0

BPREvent:=1

Figure 4-13. Brake pedal model

Processor 1

CAN transmitter

inputs

outputs

RTOS Core

Task 2

Task 1

CAN bus

Alarm 1

Alarm 2
Scheduler other

Figure 4-14. Processor 1 structure

OCERA. IST 35102 166

Chapter 4. Verifications

The model of the first processor is described in Figure Figure 4-14 . The model consists
of two automata, modelling the application tasks (Task1,Task2) periodically triggering
the inputs, group of automata modelling RTOS including pre-emptive scheduler and
periodic alarms [Wasznio03], and group of automata modelling CAN as explained in
previous sections. As shown below, the first task detects if the brake pedal is pressed
and the second one if the pedal is released.

Task1RTOS1(void) {
// send message when the pedal is pressed
if (BPPEvent) sendMsg(PedalPressed);
// otherwise terminate the task - wait for the next activation
TerminateTask();

};

Task2RTOS1(void) {
// send message when the pedal is released
if (BPPEvent) sendMsg(PedalReleased);
// otherwise terminate the task - wait for the next activation
TerminateTask();

};

Timed automaton model of Task1 is depicted in Figure Figure 4-15. Task1 becomes
ready (location Ready1) when it is triggered by an alarm (variable nActivateBPPMT
and channel wQuch) and further it is executed (location Comp1) when it is the high-
est priority task in the OS queue (array Q1). if statement (location Comp1) has exe-
cution time bounded by its lower (constant L1) and upper bound (constant U1). When
BPPevent is not set then the task terminates. Otherwise sendMsg function (locations
Waiting, Ready2, Comp2), with execution time bounded by its lower (constant L2) and
upper bound (constant U2), is executed. Similarly the timed automaton model of Task2
is depicted in Figure Figure 4-15.

Susspended

Ready1

Comp1
w<=U1

Waiting

Ready2

Comp2
w<=U2

nActivatedBPPMT>0
wQuch1!
nActivatedBPPMT--,
Q1[wQ1]:=ID,
BPPMTisSuspended:=0

Free1==1, Q1[rQ1]==ID
Urg1!

w:=0, Free1:=0, nQ1--,
rQ1:=(rQ1<sizeQ1-1?rQ1+1:0)

w>=L1,
BPPEvent==1

w>=L1, BPPEvent==0
Free1:=1,
BPPMTisSuspended:=1

P1[ID]<P1[Q1[rQ1]]
wQch1!
Q1[wQ1]:=ID, Free1:=1

Free1==1, Q1[rQ1]==ID
Urg1!

w:=0, Free1:=0, nQ1--,
rQ1:=(rQ1<sizeQ1-1?rQ1+1:0)

P1[ID]>=P1[Q1[rQ1]]
w:=0

trans_request_1!
Free1:=1,
BPPMTisSuspended:=1,
BPPEvent:=0

w>=L2

Figure 4-15. Timed automaton model of Task1

OCERA. IST 35102 167

Chapter 4. Verifications

Susspended

Ready1

Comp1
w<=U1

Waiting

Ready2

Comp2
w<=U2

nActivatedBPRMT>0
wQuch1!
nActivatedBPRMT--,
Q1[wQ1]:=ID,
BPRMTisSuspended:=0

Urg1!
Free1==1, Q1[rQ1]==ID,
!(BPPMTisSuspended==1 &&
 nActivatedBPPMT>0)
w:=0, Free1:=0, nQ1--,
rQ1:=(rQ1<sizeQ1-1?rQ1+1:0)

w>=L1,
BPRMDEvent==1

P1[ID]<P1[Q1[rQ1]]
wQch1!
Q1[wQ1]:=ID, Free1:=1

Urg1!
Free1==1, Q1[rQ1]==ID,
!(BPPMTisSuspended==1 &&
 nActivatedBPPMT>0)
w:=0, Free1:=0, nQ1--,
rQ1:=(rQ1<sizeQ1-1?rQ1+1:0)

trans_request_2!
Free1:=1,
BPRMTisSuspended:=1,
BPREvent:=0

w>=L2

w>=L1, BPRMDEvent==0
Free1:=1,
BPRMTisSuspended:=1

P1[ID]>=P1[Q1[rQ1]]
w:=0

Figure 4-16. Timed automaton model of Task2

Processor 2

inputs

outputs

Task ABS

CAN bus

RTOS Core
Alarm 1

Scheduler other

CAN transmitter

Figure 4-17. Processor 2 structure

The second processor, depicted in the Figure Figure 4-17, includes TaskABS which re-
ceives the messages (the pedal position), it reads local input (acceleration sensor), it
calculates ABS controller and accomplishes a control action (brake shoes). When brak-
ing (variable BPPMEvent == 1 in Figure Figure 4-18), the ABS controller is looking for
decelerations in the wheel that are out of the ordinary (guard acceleration <= MAXdec).
Right before wheel locks up, it will experience a rapid deceleration. If left unchecked,
the wheel would stop much more quickly than any car could. The ABS controller knows
that such a rapid deceleration is impossible, so it reduces the pressure to that brake (lo-
cation brake_shoes_released) until it sees an acceleration (guard acceleration > 0), then
it increases the pressure until it sees the deceleration again. It can do this very quickly,
before the tire can actually significantly change speed. The result is that the tire slows
down at the same rate as the car, with the brakes keeping the tires very near the point
at which they will start to lock up. Corresponding detailed models (in UPPAAL nota-
tion) of ABSTask, brakes and acceleration sensor are depicted in Figure Figure 4-19,
FigureFigure 4-20 and Figure Figure 4-21.

OCERA. IST 35102 168

Chapter 4. Verifications

idle

BPPMEvent==1

brake_shoes_pressed

brake_shoes_released

acceleration<=decMAXacceleration>0

BPRMEvent==1

Figure 4-18. ABS controller state diagram

Susspended

Ready1

Comp12
w<=U1+U2

Waiting1

Ready2

CompCase2
w<=Uc

Comp78
w<=U7+U8

Waiting2

Ready3

Comp34
w<=U3+U4

CompCase1
w<=Uc

CompCase3
w<=Uc

Comp56
w<=U5+U6

nActivatedABS>0
wQuch2!
nActivatedABS--,
Q2[wQ2]:=ID

w>=L1+L2

w:=0
brake_shoes_press!

P2[ID]<P2[Q2[rQ2]]
wQch2!
Q2[wQ2]:=ID, Free2:=1

Free2==1, Q2[rQ2]==ID
Urg2!

w:=0, Free2:=0, nQ2--,
rQ2:=(rQ2<sizeQ2-1?rQ2+1:0)

P2[ID]>=P2[Q2[rQ2]] w:=0 w>=Uc,
BPRMDEvent==1
w:=0

w:=0, Free2:=1

w>=L7+L8
brake_shoes_release!

Urg2!
Free2==1, Q2[rQ2]==ID
w:=0, Free2:=0, nQ2--,
rQ2:=(rQ2<sizeQ2-1?rQ2+1:0)

w>=Lc,
BPPMDEvent==1
w:=0

w>=Lc,
acceleration<=MAXdec,
BPRMDEvent!=1w:=0

w>=L3+L4

w:=0
brake_shoes_release!

P2[ID]<P2[Q2[rQ2]]
wQch2!
Q2[wQ2]:=ID, Free2:=1

Urg2!
Free2==1, Q2[rQ2]==ID
w:=0, Free2:=0, nQ2--,
rQ2:=(rQ2<sizeQ2-1?rQ2+1:0)

w>Uc,
acceleration>0
w:=0

w:=0

w>=L5+L6
brake_shoes_press!

w>Uc,
acceleration>MAXdec,
BPRMDEvent!=1
w:=0

w>Uc,
acceleration<=MAXdec
w:=0

P2[ID]>=P2[Q2[rQ2]] w:=0

w:=0, Free2:=1

w>=Lc,
BPPMDEvent==0

Figure 4-19. Timed automaton model of ABSTask algorithm

no_brake_activity

brake_shoes_active

brake_shoes_press?brake_shoes_release?
tBrakeActivityDelay:=0

Figure 4-20. Timed automaton model of brakes

NoAcceleration

Deceleration

CriticalDeceleration

Acceleration

acceleration:=Acc acceleration:=noAcc

acceleration:=oMAXdec

acceleration:=bMAXdecacceleration:=oMAXdec

acceleration:=noAcc

Figure 4-21. Timed automaton model of acceleration sensor

OCERA. IST 35102 169

Chapter 4. Verifications

4.1.6.2.1. Verification
The system parameters are shown in Table 4-4, Processor 1 RTOS system parameters,
Table 4-5, Processor 2 RTOS system parameters and Table 4-6, Message Parameters for
this case study.

Table 4-4. Processor 1 RTOS system parameters

Task name Task period [usec] U1,U2,L1,L2[usec]
Task1 5000 1
Task2 5000 1

Table 4-5. Processor 2 RTOS system parameters

Task name Task period [usec] U1...U8,L1...L8[usec]
TaskABS 5000 1

Table 4-6. Message Parameters

Message ID Cm [usec] bit time[usec]
1 504 8
2 504 8

Timing and logical properties to be verified can be for example the following ones:

1. Is the system deadlock free?
2. When the pedal was pressed and not released, the PedalReleased message would not

be received.
3. Message PedalPressed is received at least 2ms after the pedal has been pressed.
4. What is the worst case receive time for message PedalPressed?
5. Will be ever the ABS active?
6. What is the worst-case time for activation of brake shoes?

These properties are formulated in the temporal logic based formalism used in the UP-
PAAL verification tool UPPAAL [UPPAAL00] as follows:

1. A [] (not deadlock)
2. (BrakePedal.bPedalPressed and not BrakePedal.bPedalStillReleased) --> (not BPRMDE-

vent==1)
3. A [] (tBrakeActivityDelay>2000 and not BrakePedal.bPedalReleased) imply (BPP-

MDEvent==1)
4. A [] (tBrakeActivityDelay>X and not BrakePedal.bPedalReleased) imply (BPPMDE-

vent==1)
5. E <> (R2T1.Sheduled2)
6. A [] (Brake.brake_shoes_active and not BrakePedal.bPedalReleased and not BrakePedal.bPedalStillReleased)

imply (tBrakeActivityDelay<X)
The verification results of timed automata tool are as follows:

1. Property is satisfied
2. Property is satisfied
3. Property is not satisfied
4. X=5507 - found by iteration (using bisection)
5. Property is satisfied
6. X=10007 - found by iteration (using bisection)

OCERA. IST 35102 170

Chapter 4. Verifications

4.1.7. Installation instructions
Not applicable.

Bibliography
[Holzmann91] Gerard J. Holzmann, 1991, Prentice Hall, Design and validation of com-

puter protocols.

[Buttazoo97] C. Buttazzo, 1997, Kluwer Academic Publisher, Hard Real-time computing
systems: Predictable Scheduling Algorithms and Applications.

[Best98] Eike Best and Bernd Grahlmann, 1998, Programming Environment based on
Petri nets: Docummentation and User Guide Version 1.8.

[Best93] Eike Best and R. P. Hopkins, 1993, B(PN)2 - A Basic Petri Nets Programming
Notation.

[UPPAAL00] Paul Pettersson and Kim Guldstrand Larsen, 2000, UPPAAL2k: http://www.uppaal.com.

[PEPTOOL] PEP tool: http://theoretica.informatik.uni-oldenburg.de/~pep/.

[Tindell94] Ken Tindell and A. Burns, 1994, Guaranteeing Message Latencies on Con-
troller Area Network (CAN) .

[CAN01] K. Etschberger, 2001, Controller Area Network : Basics, Protocols, Chips and
Applications.

[Alur94] Rajeev Alur and David Dill, 1994, A theory of timed automata.

[Katoen99] Joost-Pieter Katoen, 1999, Concepts, Algorithms, and Tools for Model Check-
ing.

[Wasznio03] Libor Waszniowski and Zdenek Hanzalek, 1994, Analysis of Real-Time Op-
erating System Based Applications.

[Corbett96] James C. Corbett, 1996, Timing Analysis of {A}da Tasking Programs: IEEE
Transactions on Software Engineering.

[Berard01] B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, and P.
Schnoebelen, 2001, Systems and Software Verification: Model-Checking Techniques
and Tools.

[Klein93] M.H. Klein, T. Ralya, B. Pollak, R. Obenza, M. Gonza, and L. Harbour, 1993,
Practitioners Handbook for Real-Time Analysis: Guide to Rate Monotonic Analysis
for Real Time Systems.

[Osek00] 2000, OSEK/VDX: Specification 2.1.

[Liu00] Jane Liu, 2000, Real-Time Systems.

[Kerim00] Nice Kerim, How Anti lock Brakes works: http://www.howstuffworks.com.

4.2. Verification of cooperative scheduling and
interrupt handlers

4.2.1. Sumary
Name of the component

Verification of cooperative scheduling and interrupt handlers

OCERA. IST 35102 171

Chapter 4. Verifications

Description
This component is theoretical study offering methodology and tool support for model
checking of real-time applications running under multitasking operating system.
Theoretical background is based on timed automata by Allur and Dill. As this ap-
proach does not allow to model pre-emption we focus on cooperative scheduling. The
cooperative scheduler under assumption performs rescheduling in specific points
given by "yield" instruction in the application processes. In the addition, interrupt
service routines are considered, and their enabling/disabling is controlled by inter-
rupt server considering specified server capacity. The server capacity has influence
on the margins of the computation times in the application processes. Such sys-
tems, used in practical real-time applications, can be modelled by timed automata
and further verified by existing model checking tools. The approach is illustrated in
the form of examples in the real-time verification tool UPPAAL.

Author
Libor Waszniowski, Zdenek Hanzalek

Reviewer
not validated

Layer
High-level available

Version
0.1 alfa

Status
Alfa

Dependencies
Not validated

Release date
N/A

4.2.2. Description

4.2.2.1. Abstract
This chapter is dedicated to modelling of real-time applications running under multi-
tasking operating system. Theoretical background is based on timed automata by Alur
and Dill. As this approach is not suited for modelling pre-emption we focus on cooper-
ative scheduling. The cooperative scheduler under assumption performs rescheduling
in specific points given by "yield" instruction in the application processes. In the addi-
tion, interrupt service routines are considered, and their enabling/disabling is controlled
by interrupt server considering the specified server capacity. The server capacity has
influence on the margins of the computation times in the application processes. Such
systems, used in practical real-time applications, can be modelled by timed automata
and further verified since their reachability problem and model checking of TCTL prob-
lem is decidable. The approach is illustrated in the form of examples in the real-time
verification tool UPPAAL.

4.2.2.2. Introduction
The aim of this chapter is to show, how timed automata [Alur94] can be applied to mod-
elling of real time software applications running under operating system with coopera-
tive scheduling. Model checking theory based on timed automata and implemented in
model checking tools (e.g. UPPAAL[David]) can be used for verifying time parameters
or safety and liveness properties of proposed models. The application under considera-
tion runs under multitasking operating system, it consists of several process, it includes
mechanisms for interrupt handling, and it uses inter-process communication primitives

OCERA. IST 35102 172

Chapter 4. Verifications

like semaphores, queues etc. Since the processes are not truly concurrent, they share
the processor, it is needed to model the scheduler.
Timing analysis of software (especially with concurrency and synchronisation) is not
trivial problem and it requires sophisticated methods and analysis tools. Several spe-
cial purpose methods have been developed in the area of real time scheduling [But-
tazzo97],[Liu2000]. These methods e.g. rate monotonic analysis (RMA) [Sha91] are very
successful for analysis of time-driven systems with periodic processes. To deal with
non-periodic processes in event-driven systems, the standard method is to consider the
non-periodic process as the periodic one using the minimal inter-arrival time as pro-
cess period. The analysis based on such model is too pessimistic in some cases since
inter-arrival times can vary over time [Fersman02]. Incorporation of inter-process com-
munication primitives leads to pessimistic results as well.
To achieve more precise analysis, process models allowing more precise and complex tim-
ing constraints are needed. In [Fersman02] the timed automata are extended by asyn-
chronous processes i.e. processes triggered by events to provide model for event-driven
systems, which is further used for schedulability analysis. Processes (in [Fersman02]
called tasks) associated to locations of timed automaton are executable programs char-
acterised by its worst-case execution time, deadline and other parameters for schedul-
ing (e.g. priority). Transition leading to a location in such automaton denotes an event
triggering the process and the guard on transition specifies the possible arrival times
of the event. Released processes are stored in a process queue and they are assumed
to be executed according to a given scheduling strategy. Both non-preemptive and pre-
emptive scheduling strategies are allowed. In the case of non-preemptive processes, the
schedulability checking problem can be transformed to the reachability problem for or-
dinary timed automata. In the case of preemptive processes, the schedulability checking
problem can be transformed to a reachability problem for bounded time automata with
subtraction. Both of these problems are decidable [Fersman02].
The model based on the above mentioned extended timed automata can deal with non-
periodic processes in more accurate manner than for example RMA, which does not
contain any representation of internal process structure and inter-process communica-
tion. Therefore any worst-case blocking time in RMA(e.g. inter-process communication)
must be involved in the worst-case execution time.
Approaches based on the worst case computation time of the whole process (e.g. RMA
[Sha91] or timed automata with asynchronous processes [Fersman02]) lead to pessimistic
conclusion in schedulability analysis since the worst case blocking time is considered for
the resource sharing.
This disadvantage is overcome by more detailed process model proposed in [Corbett96]
providing a method for constructing models of real time Ada tasking programs. Time,
safety or liveness properties of produced model based on constant slope linear hybrid
automata can be automatically analysed by HyTech verifier. The state of the hybrid
automaton consists of various state variables representing an abstraction of program’s
state and also of continuous variables used to measure the amount of CPU time allo-
cated to each process. A transition of the hybrid automaton represents execution of the
sequential code segment. The timing constraints of the transition are derived from the
time bounds of the corresponding code. Even thought author reports that the analysing
algorithm does usually terminate in practice, the reachability problem for hybrid au-
tomata is undecidable in general.
Hybrid automaton (or some its subclass e.g. stopwatch automaton [Cassez2000]) is needed
to model premption since it is necessary to accumulate computing time of each process
separately. The continuous variable used to measure the amount of CPU time allocated
to each process must be stopped when the corresponding process is preempted and must
progress when the corresponding process is executed. Such behaviour cannot be mod-
elled by timed automaton that does not allow stopping of the clock variable when the
process was preempted.

OCERA. IST 35102 173

Chapter 4. Verifications

Preemptive schedulers are known to provide higher utilisation of processor than coop-
erative ones [Buttazzo97]. On the other hand the processor utilisation is less important
criterion when the schedulability can be proven for a given set of processes under co-
operative policy. Moreover the cooperative scheduling has some advantages important
especially for hard real time applications. In cooperative scheduling, process specifies
when it is willing to release CPU to another process. Then it is easy to make sure all
data structures are in a defined state. Applications using cooperative scheduling are
therefore easier to program and to debug.
In this deliverable we present another important advantage of cooperative scheduling
that is possibility to create mathematical model of the application based on timed au-
tomata and to verify its time, safety and liveness properties. Opposite to the model of the
system with preemption based on hybrid automata, this approach has guarantied ter-
mination of verification algorithm due to decidability of reachability problem and model
checking of timed computation tree logic (TCTL) problem. Moreover timed automata
are one of the most studied models for real time systems and several model checkers are
available (e.g. Kronos and UPPAAL[David])
Multitasking operating system and scheduling anomaly
Several processes share one processor in the systems with multitasking. The processor
sharing is managed by the scheduler according to the scheduling policy. Process changes
its state (state from the point of view of operating system) according to the state tran-
sition diagram in Figure 4-22 representing both, cooperative scheduling ("yield control"
on Deschedule transition) or preemptive scheduling ("preempted" on Deschedule transi-
tion).

Descheduled
(preempted, yield control)

Scheduled

Blocked

Signalled

Executed

Ready

Pended

Executed - the process is executed on the processor
Pended - execution of the process cannot continue

due to waiting for some event
(communication, timer, etc.)

Ready - process is ready for execution and it is
waiting in ready queue for the processor.

Figure 4-22. State transition diagram of the process in the multitasking
operating system

Several multiprocessor time anomalies are known in the scheduling theory [Buttazzo97],
[Graham69], [Liu2000]. Similar non-linear behaviour (a shortening of the computation
time leading to the prolongation of the completion time) can be found on one processor
regardless the scheduling policy (preemptive or cooperative), when the processes contain
computations, resource sharing and idle waiting (notice that idle waiting is processed in
parallel with computation of another process).
Example depicted in Figure 4-23 shows a high priority processes P-high and a low pri-
ority process P-low sharing one resource represented by a semaphore Sem . The pro-
cesses consist of computations with specified deterministic computation time, of idle
waiting with specified deterministic delay and of inter process communication through
semaphore, which can be hold by only one process. The computation times and delays
given behind slash are assumed to be constant. The computation time of CompC/C is C
=2 in the instance a) or C =1 in the instance b).
In the instance a) regardless the scheduling policy (priority based preemptive or priority
based cooperative) the semaphore is taken by P-high first. Consequently the process P-
high is completed in 7 time units and the process P-low is completed in 9 time units,
see Figure 4-23 a). In the instance b), the semaphore is taken by process P-low first and
consequently the process P-high is completed in 9 time units and the process P-low is
completed in 10 time units, see Figure 4-23 b).
The shortening of the computation time in the process P-low (C shorted from 2 to 1)
leads to the prolongation of the completion time of both processes. As a consequence this

OCERA. IST 35102 174

Chapter 4. Verifications

example illustrates some important phenomena:
even for preemptive scheduling policy the low priority process influences completion
time of the high priority process (due to the shared resource)
when one wants to make use of the internal process structure, then it is needed to specify
lower margins of computation times even for schedulability analysis (studying the upper
margin of the process completion time).
Based on these observations we provide the models including upper and lower margins
of the computation time, inter process communication primitives and delays. In addition
to that we provide a simple solution for verification of models including interrupts.

Process P-low
{
 CompC/C
 Take Sem
 Delay/3
 Give Sem
 CompD/1
 CompE/1
}

CompC

CompA CompB

CompD

1 10

2 64

5

b)

CompC

CompA CompB

CompD

P-high

P-low

2 6

2 3 7

a)

3

Process P-high
{
 Delay/2
 Take Sem
 CompA/1
 Give Sem
 Delay/1
 CompB/3
}

P-high

P-low

4

5 9

8

4

7

CompE

CompE

9

6

CompA Executed

Delayed

Owning Sem.

Figure 4-23. Example of monoprocessor scheduling anomaly

4.2.3. API/Compatibility
Not applicable.

4.2.4. Implementation issuses

4.2.4.1. Cooperative scheduling
Cooperative scheduling enables to deschedule currently executed process only in ex-
plicitly specified points, where the system call yield() is called or where the process is
waiting.
The example of the application process model is depicted in Figure 4-24. We can recog-
nise four types of locations there. Except one location WaitTimer , where the process
does not require processor, there are several Computation locations corresponding to
sequential blocks of code (Comp) requiring non-preemptible execution on the processor.
Computations do not contain any blocking operation. Each two successive Computation
locations are separated by one Yield location corresponding to yield instruction where
the process can be descheduled and then it waits there until it is scheduled again. Wait-
Timer location is followed by WaitProc location where the process waits until it is sig-
nalled and consequently scheduled.

OCERA. IST 35102 175

Chapter 4. Verifications

Comp2

w<=H2

w>=L2
w:=0 w:=0

Comp3

w<=H3

WaitTimer

t<=Period

w>=L3

t:=0

t>=Period

Fnc_Process1
{

while (TRUE)
{
Comp1
yield()
Comp2
yield()
Comp3
Wait_End_of_Period
}

}

Deschedule!

Signal!
Block!

Comp1

w<=H1

w:=0
w>=L1
w:=0 w:=0

WaitProc Yield1 Yield2

Schedule? Schedule? Schedule?
Deschedule!

Figure 4-24. Model of the application process executed under cooperative
scheduling policy

As each part of the program modelled by Computation location cannot be affected by
the preemption, its finishing time is known a priory and equal to computation time
bounded by interval L,H (lower and upper margins allowing to involve uncertainty of
execution time due to non-modelled code branching inside the computations, bus errors,
cache faults, page faults, cycle stealing by DMA device, etc.). Computation locations are
therefore guarded by standard time conditions supported by timed automata.
The following behaviour of the cooperative scheduler is assumed: if the processor is free,
the process with the highest priority among all processes in the ready queue is sched-
uled. The currently executed process will run until it voluntarily relinquishes processor
by calling system call yield() or until it is blocked. The model of the cooperative scheduler
is created as the network of automata synchronised with application processes through
synchronisation channels as depicted in Figure 4-25. Deschedule channel is used to sig-
nal that the process relinquishes the processor (by yield()). The scheduler chooses the
highest priority ready process and enables its execution through Schedule channel.

P1 Sch1

Schedule1

Deschedule1

Block1

Signal1

P2 Sch2

Schedule2

Deschedule2

Block2

Signal2

Pn Schn

Schedulen

Deschedulen

Blockn

Signaln

.........

SchedulerApplication

wPriorQueue

wQch

wQch

wQch

wQch
P

ID1 ID2 ID3 ID4 ... IDnPriorities

- ID3 ID4 ID1 ID2 - - -

rQ wQ

Q

nQReady queue

Figure 4-25. Synchronisation of cooperative scheduler with application
processes

One automaton of the cooperative scheduler model (Sch
i
) is depicted in Figure 4-26.

Ready Execution

Pended

Free:=1

Block?
Signal?

Free==1, Q[rQ]==ID

Free:=0, nQ:=nQ-1, rQ:=(rQ<sizeQ-1 ? rQ+1 : 0)

Schedule!

Q[wQ]:=ID

wQch! Deschedule?

Free:=1

Q[wQ]:=ID

wQch!

Figure 4-26. One automaton (Schi) of the cooperative scheduler in Figure 4-25

Each process is identified by unique integer ID (0,1,2,...). Priority of the process is stored
in global array P , indexed by ID . ID s of all processes, which are in Ready state, are

OCERA. IST 35102 176

Chapter 4. Verifications

stored in queue modelled as global array Q of the size sizeQ representing circular buffer.
The integer nQ is the number of elements in the queue. The integer rQ is the position for
reading of the first element in Q and the integer wQ is position of the first empty element
in Q as is depicted in Figure 4-25. Processes are ordered in descending order according
to their priorities in Q (rQ points to the ready process with highest priority). Therefore Q
must be reordered after writing new ID to the Q on the position wQ . Ordering according
priorities is provided by automaton wPriorQueue. Reordering mechanism is started by
synchronisation channel wQch.
Note on modelling of context switch time:
Please notice that the model of the scheduler proposed in Figure 4-26 is simplified by
assumption that the context switch does not take any time. But for proper exploration
of time properties of real-time system the context switch time should be considered.
Because the context switch in cooperative scheduling occurs once per Computation loca-
tion, context switch time can be involved in the computation time of each Computation.

4.2.4.2. Interrupts
Interrupts are usually used for fast handling of asynchronous external events. Interrupt
is particularly important in cooperative scheduling since a low priority process cannot be
preempted and therefore a high priority process cannot be used to handle asynchronous
event when short requesting time is required. When the interrupt request (IRQ) arrives
from the environment and corresponding interrupt is enabled, currently executed pro-
cess is interrupted and interrupt service routine (ISR) is executed. The relative finishing
time F of currently executed Computation is therefore prolonged by computation time of
ISR (C

ISR
) and it is no more equal to known computation time . In the timed automata

process model it is needed to change upper margin H of each computation location. Each
H is prolonged by MaxSC , the value corresponding to the processor time reserved for all
interrupt service routines. Since the number of interrupt requests depends on the envi-
ronment, the total computation time of all ISR (C

ISR
) is not known a priory and moreover

the existence of its upper bound is not guaranteed.
The interrupt server limiting amount of CPU time spent for interrupts (similar to de-
ferrable server [Buttazzo97][Larsen95]) is used to guarantee that C

ISR
does not exceed

MaxSC value . The lower margin L of computation location is not affected by interrupts
(situation when computation time reaches the lower bound and no interrupt occurs).
The architecture of the system with interrupt server is depicted in Figure 4-27. Interrupt
service routines are not called directly when some interrupt is requested, but they are
wrapped by the code of ISR_Server() function (see Figure 4-28). The interrupt server has
specified server capacity SC , which is filled by the value MaxSC at the beginning of each
computation. The function Fill_Server(MaxSC) listed in Figure 4-28 is used for it. When
an interrupt occurs the server capacity SC is decreased by the value of corresponding
C

ISR
and interrupt server checks if the remaining capacity SC is sufficient for handling

next ISR . If not the corresponding IRQ is disabled. This check is provided when SC
changes, once by Fill_Server() and repeatedly on each interrupt by ISR_Server() (both
listed in Figure 4-28). Notice that C

S
, the computation time of ISR_Server() , is con-

sidered. Further H has to be prolonged by C
FS

, the computation time of the function
Fill_Server() (see Figure 4-29).
Figure 4-30 shows the time diagram when IRQ1 occurred twice within computation
Comp1 . Suppose system containing two sources of interrupts (IRQ1 and IRQ2) with
the following computation times: C

Comp1
=21 , C

FS
=4 , C

S
=4 , C

ISR1
=4 , C

ISR2
=7

and MaxSC1=17 . The routine Fill server is executed at the beginning of Comp1 at
time 0 . This routine sets the server capacity SC to the value MaxSC1 and it checks
if this value is sufficient for handling all interrupt service routines. Interrupt request
IRQ1 occurs at time 9, execution of Comp1 is interrupted and execution of ISR_Server()
routine is started. This routine decreases server capacity SC by computation time of
interrupt server C

S
and by computation time of interrupt service routine C

ISR1
. Then it

OCERA. IST 35102 177

Chapter 4. Verifications

starts interrupt service routine ISR1 and then it checks if the remaining server capacity
SC is sufficient for next interrupt request handling. Since this is not the case of IRQ2
(SC=9 < C

S
+C

ISR2
=11), the IRQ2 is disabled. Then the execution of Comp1 continues

until it is again interrupted by the second occurrence of IRQ1 at time 25 . After this
interrupt handling, the remaining server capacity SC is only 1 that is not sufficient
for handling any interrupt. Therefore both interrupt requests are disabled. The server
capacity SC is replenished with the new value MaxSC2 by routine Fill server at the
beginning of next computation Comp2 at time 41 . Notice that the function ISR_Server()
supposes that the hardware does not support nested interrupts (ISR_Server() cannot be
interrupted by another interrupt).

..... ...

Interrupt Server

Scheduler

Pn
ISRnISR1

ISR_
Server

HW
IRQ1

IRQn

...

SC
ISR_

Server

-
-

+

P1

+

INT1 INTnDI1 DIn

Figure 4-27. System architecture with interrupt server

Fill_Server (MaxSC)
{
 Disable_INT
 SC :=MaxSC
 Check for all IRQ
 if (SC – CISR - CS) < 0
 Disable IRQ
 else
 Enable IRQ
 Enable_INT
}

ISR_Server ()
{
 SC := SC – CISR - CS
 call ISR
 Check for all IRQ
 if (SC – CISR - CS) < 0
 Disable IRQ
 else
 Enable IRQ
}

Figure 4-28. Interrupt server routines

Comp1
w<=H1 + CFS + MaxSC1

Schedule?

w:=0

w>=L1 + CFS

Deschedule!

Figure 4-29. Computation location considering interrupts

OCERA. IST 35102 178

Chapter 4. Verifications

Fill
server

Comp1
ISR

server
ISR1 Comp1

ISR
server

ISR1 Comp1
Fill

server
Comp2

MaxSC1

CISR1

IRQ2 OK

IRQ1 OK

Disable IRQ2

MaxSC2

IRQ1 IRQ1

F_Comp1 L1 + CFS, H1 + CFS + MaxSC1

Mask of IRQ1
Enable

Disable

Enable

Disable

Disable IRQ1

SC

CISR2

CISR1 CISR1
CFS

CS

CS CS

time

time

time

time

Gantt
diagram

0
Disable IRQ2

4 9 13 17 25 29 33 41 45

17

9

Mask of IRQ2

CISR1

CS

CISR1

CS

CS

CISR2

CS

CISR1

CS

IRQ1 OK

CISR1

IRQ2 OK

CISR2

CS CS

IRQ1 OK

Figure 4-30. Time diagram of ISR execution within interrupt server

Choice of MaxCS value for different locations depends on application requirements
and it is specified at the design stage. Section 4.2.7, Examples section shows an ex-
ample application with one IRQ, two processes of different priority and one semaphore
(semaphore is discussed in Section 4.2.4.3.1, Semaphore).

4.2.4.3. Inter process communication primitives
Very important part of each multitasking application (and source of many possible er-
rors) is communication between processes and their synchronisation. Operating system
usually provides many facilities to manage inter process communication. It is not in-
tention of this paper to introduce models of all possible kinds of inter process commu-
nication. We only show on example of semaphore how to extend the proposed model of
scheduler and application. The context switch time is not considered for simplification
in this section.

4.2.4.3.1. Semaphore
The semaphore is the primitive used mostly for synchronisation and mutual access to
resources. It can be taken or given by process using the system calls Take() or Give()
. When the semaphore is given, its value is increased. When the semaphore is taken,
its value is decreased. When the value of the semaphore is zero, it cannot be taken
and the process attempting to take it is blocked until the semaphore is given by other
process. This blocking time can be bounded by timeout. When more than one processes
are blocked on one semaphore, they are waiting in priority queue or FIFO (First In First
Out) queue. This basic behaviour of semaphore can be modified according to the purpose
it is dedicated to. We suppose the semaphore being of counting type with value ranging
from zero to MaxCount .
In this section we introduce model of the process using semaphore. In addition it is
needed to extend the scheduler model. Example of application process model is depicted
in Figure 4-31. The process attempts to take the semaphore by synchronisation Take! .
Then it waits in location WaitSem until the semaphore is taken (synchronisation Taken?
) or until timeout expires (synchronisation TOut!). The synchronisation Give! is used
to give the semaphore. Notice that giving the semaphore is not blocking operation and
therefore the semaphore is given on the transition entering the Computation location.
On the other hand taking semaphore is blocking operation and therefore transitions
with Taken? and TOut! lead to the location WaitProc where the process waits for the

OCERA. IST 35102 179

Chapter 4. Verifications

processor. Notice also that all synchronisations Take! , Taken? , TOut! and Give! corre-
spond to only one semaphore. (Another name of the synchronisations should be used for
the next semaphore in the application.).

Comp1
w<C1Hi

Comp2
w<C2Hi

Comp3
w<C3Hi

WaitTimer
t<=Period

WaitProc1 WaitProc2WaitSem
w<=TimeOut

WaitProc3
Comp4

w<C4Hi
Yield

w>C1Lo
Take!

w:=0

w>C2Lo
Give!

t>=Period

t:=0

Signal!

Schedule?

w:=0

Schedule?

w:=0

w>C3Lo

Block!

Taken?

w>=TimeOut
TOut!

Schedule?

w:=0

w>C4Lo
Deschedule!

Schedule?
w:=0

Fnc_Process1
{

while (TRUE)
{

Comp1

Result := Take (Sem, TimeOut)
if (Result == TOut)
{

Comp4
Yield()

}
else
{

Comp2
Give (Sem)

}
Comp3
Wait_End _of_Period

}
}

Figure 4-31. Model of process containing Take and Give one semaphore

Scheduler model for application with one semaphore is depicted in Figure 4-32. The
scheduler of executed process is asked for taking the semaphore by synchronisation
Take? . If the semaphore is empty (Sem==0), the processor is relinquished (Free:=1), ID
of the process is written to the queue of the semaphore (SemQ) and the queue (FIFO
or priority) is reordered by synchronisation wSemQch! . The scheduler and the process
then wait the in location WaitSem until the semaphore is given by another process or
until its time-out expires.
If the semaphore is not empty (Sem>0) its value is decreased and the synchronisation
Taken! is immediately followed by synchronisation Schedule! to move the process to the
next computation location. The processor is not relinquished in this case.

Ready Execute

PendedTimer

PendedSem

Free:=1

Block?Signal?

Free==1, Q[rQ]==ID

Free:=0, nQ:=nQ-1, rQ:=(rQ<sizeQ-1 ? rQ+1 : 0)

Schedule!

Q[wQ]:=ID

wQch! Deschedule?

Free:=1

Q[wQ]:=ID

wQch!

wQch!

Q[wQ]:=ID

wQch!

Q[wQ]:=ID

Sem>0, SemQ[rSemQ]==ID
Taken!

Sem:=Sem-1, nSemQ:=nSemQ-1,

TOut?

Sem==0
wSemQch!

SemQ[wSemQ]:=ID, Free:=1

Take?

Sem>0
Taken!

Sem:=Sem-1

Schedule!

Give?
Sem:=(Sem<MaxCount ? Sem+1 : MaxCount)

ExCh!

ExV:=ID

Figure 4-32. Scheduler model containing Take and Give of one semaphore
(extension of Figure 4-26)

The queue of the processes waiting for the semaphore (SemQ) can be FIFO or priority
queue. When the queue is priority queue, its elements (ID s of processes in this case)
must be reordered according to priorities when the next process issues Take on empty
semaphore. The only difference is the name of the queue (SemQ , wSemQch , nSemQ
, rSemQ , wSemQ). Reordering is not necessary when FIFO is used. For compatibility
with scheduler automaton in Figure 4-32 the automaton wFifoQueue is used in Figure
4-33.

nQ<sizeQ
wQch?

nQ:=nQ+1, wQ:=(wQ<sizeQ-1 ? wQ+1 : 0)

Figure 4-33. Automaton wFifoQueue providing writing to the FIFO queue

OCERA. IST 35102 180

Chapter 4. Verifications

4.2.4.4. Conclusion and future work
The cooperative scheduling approach given in this chapter avoids preemption modelling
by hybrid automata. Model of the application processes and cooperative scheduler is
based on timed automata, for which model checking of TCTL property problem is decid-
able (opposite to hybrid automata). Interrupts and inter-process comunication - the most
important aspect of real time embedded applications - are taken into consideration in
proposed model. With respect to the processor utilisation and reaction time the system
conceived in this chapter is not the most efficient one, but due to simplicity reasons many
embedded applications are often based on similar cooperative scheduling mechanisms
handling interrupts separately, so this approach is not just an academic idea.
Existing approaches for design and analysis of real-time applications, like Rate Mono-
tonic Analysis (using preemptive scheduling based on priority assignment respecting
the rate of periodic processes), use very elegant way of deciding whether the application
is schedulable or not. Another approach based on timed automata with asynchronous
processes [Fersman02] is suited for schedulability analysis of aperiodic processes. But
both of these approaches do not consider internal process structure. As a consequence
they provide too pessimistic results, especially when the application uses inter-process
communication. Beside of that with respect to RMA it is needed to mention, that the
model checking approach provides a room for verifying more complex properties (e.g.
detection of deadlocks in communication, specification of buffer size,...). Model check-
ing provides also room for modelling of more complex time behaviour of the controlled
system, running truly in parallel with the control system (modelled as separate automa-
ton).
Moreover this approche offers a frame work to combine verification of RTOS and CAN
communication network (see CAN model by timed automata /Petri Nets component)
with verification of faul-tolerant applications (see workpackage 6 - Fault Tolerant com-
ponent). In order to reach full compatibility with RTLinux it is needed to study the
Kernel intervals and to use different tools (e.g. Hytech) so that the preemptive can be
modelled.

4.2.5. Implementation issuses
Not applicable.

4.2.6. Tests
Not applicable.

4.2.7. Examples

4.2.7.1. Example of system with interrupt
Consider application depicted in Figure 4-34. It consists of two processes scheduled by
cooperative scheduling (model of scheduler automaton is not depicted here because it
is identical to automaton in Figure 4-32). First process Proc_Period is periodically ex-
ecuted with low priority (Figure 4-39). The second process Proc_Int with high prior-
ity is intended for handling external aperiodic events (Figure 4-38). It is waiting for
semaphore that is given within interrupt service routine. Interrupt requests (IRQ) are
generated by model of Environment (Figure 4-35). If the interrupt request is enabled
(EN>0), hardware interrupt controller InterruptCtrl (Figure 4-36) generates interrupt
(INT). Than it waits until interrupt service routine is finished (signaled by channel iRet
). All other IRQ are ignored before iRet . Interrupt (INT) invokes ISR_Server (Figure
4-37). The integer variable SC represents capacity of the interrupt server. After each
interrupt, SC is decreased by constant C_ISR representing computation time of inter-
rupt service routine plus ISR_Server routine. If remaining SC is not sufficient for next
interrupt (SC-C_ISR<0), the interrupt is disabled (EN:=0).

OCERA. IST 35102 181

Chapter 4. Verifications

Environment
Interrupt Ctrl

(HW)
ISR_Server

Proc_Int

Proc_Period

INTIRQ

EN SCSem

Figure 4-34. Interconnection of sample automata

t<=PH

t>=PL
t:=0

IRQ!

Figure 4-35. Model of Environment generating IRQ

EN>0
IRQ?

INT!

EN==0
IRQ?

IRQ?

iRet?

Figure 4-36. Model of hardware interrupt controller

ISR_Comp
w<=C_ISR

INT?

w:=0, SC:=SC-C_ISR,
EN:=((SC-C_ISR)>=0 ? 1 : 0)

w>=C_ISR

Sem:=(Sem<MaxCount ? Sem+1 : MaxCount)

iRet!

Figure 4-37. ISR_Server model

Computation1
w<H1+FS+S1

Computation2
w<H2+FS+S2Yield WaitProc

WaitSem

w>L1+FS
Take!

Schedule?

w:=0, SC:=S1,
EN:=((SC-C_ISR)>=0 ? 1 : 0)

Schedule?

w:=0, SC:=S1,
EN:=((SC-C_ISR)>=0 ? 1 : 0)

Taken?Signal!

Deschedule!
w>L2+FS

Figure 4-38. Model of high-priority process Proc_Int

Computation1
w<H1+FS+S1

Computation2
w<H2+FS+S2 Computation3

w<H3+FS+S3

WaitTimer
t<=Period

WaitProc
Yield1 Yield2

w>L1+FS
Deschedule!

w>L2+FS
Deschedule!

t>=Period

t:=0

Signal!

Schedule?

w:=0, SC:=S1,
EN:=((SC-C_ISR)>=0 ? 1 : 0)

Schedule?

w:=0, SC:=S1,
EN:=((SC-C_ISR)>=0 ? 1 : 0)

Schedule?

w:=0, SC:=S1,
EN:=((SC-C_ISR)>=0 ? 1 : 0)

w>L3+FS
Block!

Figure 4-39. Model of low-priority periodic process Proc_Period

Bibliography
[Katoen99] Joost-Pieter Katoen, , and , 1998/1999, Concepts, Algorithms, and Tools for

Model Checking.: Lecture Notes of the Course "Mechanised Validation of Parallel
Systems" (course number 10359).

[Clarke96] Edmund M. Clarke, Jeannette M. Wing, and , 1996, Formal methods: state of
the art and future directions.: Vol. 28, no 4, pp 623-643.

[Alur93] R. Alur, C. Courcoubetis, and D. Dill, 1993, Model-checking in dense real-time.
Information and Computation: 104(1): 2-34.

[Alur94] R. Alur, D. Dill, and , 1994, A theory of timed automata: Theoretical Computer
Science 126:183-235.

[Alur91] R. Alur, T. Henzinger, and , 1991, Logics and Models of Real Time: A Survey. In
Real-Time: Theory in Practice: REX Workshop, LNCS 600, pp. 74-106.

OCERA. IST 35102 182

Chapter 4. Verifications

[David] A. David, , and , , Uppaal2k: Small Tutorial. Documentation to the verification
tool Uppaal2k: http://www.docs.uu.se/docs/rtmv/uppaal/.

[Buttazzo97] Giorgio Buttazzo, , and , 1997, Hard Real-Time Computing Systems: Pre-
dictable Scheduling Algorithms and Applications: .

[Sha91] Lui Sha, M. Klein, and J. Goodenough, 1991, Rate Monotonic Analysis for Real-
Time Systems.: 129-155. Foundations of Real-Time Computing: Scheduling and Re-
source Management. Boston, MA.

[Graham69] R. Graham, , and , 1969, Bounds on multiprocessing timing anomalies:
SIAM J. Appl. Math., 17 (1969), pp. 416-429.

[Larsen95] Kim G. Larsen, Paul Pettersson, and Wang Yi, 1995, Model-Checking for
Real-Time Systems: In Proceedings of the 10th International Conference on Fun-
damentals of Computation Theory, Dresden, Germany, 22-25 August, 1995. LNCS
965, pages 62-88, Horst Reichel (Ed.).

[Liu2000] Liu, W.S. Jane, and , 2000, Real-time systems: ISBN 0-13-099651-3.

[Shaw89] A. Shaw, , and , 1989, Reasoning about time in higher-level language software:
IEEE Transactions on Software Engineering, vol. 15.

[Corbett96] J. C. Corbett, , and , 1996, Timing analysis of Ada tasking programs: IEEE
Transactions on Software Engineering., 22(7), pp. 461-483.

[Cassez2000] F. Cassez , K. Larsen, and , 2000, The Impressive Power of Stopwatches:
In Proceedings of CONCUR 2000 - Concurrency Theory, 11th International Confer-
ence, University Park, PA, USA, August 2000 CONCUR\’2000. LNCS 1877, p. 138
ff., .

[Bouyer2000] P. Bouyer, C. Dufourd, E. Fleury, and A. Petit, 2000, Are Timed Automata
Updatable ?: In Proc. 12th Int. Conf. Computer Aided Verification (CAV\’00), LNCS,
Vol.1855, pp. 464-479.

[Amnell01] Tobias Amnell, Gerd Behrmann, Johan Bengtsson, Pedro R. D’Argenio, Alexan-
dre David, Ansgar Fehnker, Thomas S. Hune, Bertrand Jeannet, Kim Larsen, M.
Olivier Möller, Paul Pettersson, Carsten Weise, and Wang Yi, 2001, UPPAAL - Now,
Next, and Future: MOVEP’2k, LNCS Tutorial 2067.

[Fersman02] Elena Fersman, Paul Pettersson, and Wang Yi, 2002, Timed Automata with
Asynchronous Processes: Schedulability and Decidability: In Proceedings of 8th In-
ternational Conference on Tools and Algorithms for the Construction and Analysis
of Systems, TACAS 2002, Grenoble, France, April 8-12, 2002, pp.67-82, Springer-
Verlag, 2002. Lecture Notes in Computer Science, Vol.2280.

[Holzmann91] Gerard J. Holzmann, 1991, Design and Validation of Computer Protocols:
512 pgs. ISBN 0-13-539925-4 hardcover (USA), ISBN 0-13-539834-7 paperback (in-
ternational edition).

OCERA. IST 35102 183

	D7.4.pdf
	
	D7.4rep Communication Components
	Table of Contents
	List of Tables
	List of Figures
	Preface
	Chapter 1. OCERA RealTime Ethernet
	1.1. ORTE
	1.1.1. Sumary
	1.1.2. Description
	1.1.3. API / Compatibility
	1.1.3.1. Data types

	enum SubscriptionMode
	Name
	Synopsis
	Constants
	Description

	enum SubscriptionType
	Name
	Synopsis
	Constants
	Description

	enum ORTERecvStatus
	Name
	Synopsis
	Constants
	Description

	enum ORTESendStatus
	Name
	Synopsis
	Constants
	Description

	struct ORTEIFProp
	Name
	Synopsis
	Members
	Description

	struct ORTEMulticastProp
	Name
	Synopsis
	Members
	Description

	struct ORTECDRStream
	Name
	Synopsis
	Members
	Description

	struct ORTETypeRegister
	Name
	Synopsis
	Members
	Description

	struct ORTEDomainBaseProp
	Name
	Synopsis
	Members

	struct ORTEDomainWireProp
	Name
	Synopsis
	Members

	struct ORTEPublProp
	Name
	Synopsis
	Members

	struct ORTESubsProp
	Name
	Synopsis
	Members

	struct ORTEAppInfo
	Name
	Synopsis
	Members

	struct ORTEPubInfo
	Name
	Synopsis
	Members

	struct ORTESubInfo
	Name
	Synopsis
	Members

	struct ORTEPublStatus
	Name
	Synopsis
	Members

	struct ORTESubsStatus
	Name
	Synopsis
	Members

	struct ORTERecvInfo
	Name
	Synopsis
	Members

	struct ORTESendInfo
	Name
	Synopsis
	Members

	struct ORTEDomainAppEvents
	Name
	Synopsis
	Members
	Description

	struct ORTETasksProp
	Name
	Synopsis
	Members

	struct ORTEDomainProp
	Name
	Synopsis
	Members
	1.1.3.2. Functions

	IPAddressToString
	Name
	Synopsis
	Arguments

	StringToIPAddress
	Name
	Synopsis
	Arguments

	NtpTimeToStringMs
	Name
	Synopsis
	Arguments

	NtpTimeToStringUs
	Name
	Synopsis
	Arguments

	ORTEDomainStart
	Name
	Synopsis
	Arguments
	Description

	ORTEDomainPropDefaultGet
	Name
	Synopsis
	Arguments
	Description

	ORTEDomainInitEvents
	Name
	Synopsis
	Arguments
	Description

	ORTEDomainAppCreate
	Name
	Synopsis
	Arguments
	Description

	ORTEDomainAppDestroy
	Name
	Synopsis
	Arguments
	Description

	ORTEDomainAppSubscriptionPatternAdd
	Name
	Synopsis
	Arguments
	Description

	ORTEDomainAppSubscriptionPatternRemove
	Name
	Synopsis
	Arguments
	Description

	ORTEDomainAppSubscriptionPatternDestroy
	Name
	Synopsis
	Arguments
	Description

	ORTEDomainMgrCreate
	Name
	Synopsis
	Arguments
	Description

	ORTEDomainMgrDestroy
	Name
	Synopsis
	Arguments
	Description

	ORTEPublicationCreate
	Name
	Synopsis
	Arguments
	Description

	ORTEPublicationDestroy
	Name
	Synopsis
	Arguments
	Description

	ORTEPublicationPropertiesGet
	Name
	Synopsis
	Arguments
	Description

	ORTEPublicationPropertiesSet
	Name
	Synopsis
	Arguments
	Description

	ORTEPublicationGetStatus
	Name
	Synopsis
	Arguments
	Description

	ORTEPublicationSend
	Name
	Synopsis
	Arguments
	Description

	ORTESubscriptionCreate
	Name
	Synopsis
	Arguments
	Description

	ORTESubscriptionDestroy
	Name
	Synopsis
	Arguments
	Description

	ORTESubscriptionPropertiesGet
	Name
	Synopsis
	Arguments

	ORTESubscriptionPropertiesSet
	Name
	Synopsis
	Arguments
	Description

	ORTESubscriptionWaitForPublications
	Name
	Synopsis
	Arguments
	Description

	ORTESubscriptionGetStatus
	Name
	Synopsis
	Arguments
	Description

	ORTESubscriptionPull
	Name
	Synopsis
	Arguments
	Description

	ORTETypeRegisterAdd
	Name
	Synopsis
	Arguments
	Description

	ORTETypeRegisterDestroyAll
	Name
	Synopsis
	Arguments
	Description

	ORTEVerbositySetOptions
	Name
	Synopsis
	Arguments
	Description
	For instance

	ORTEVerbositySetLogFile
	Name
	Synopsis
	Arguments
	Description

	ORTEInit
	Name
	Synopsis
	Arguments

	ORTEAppSendThread
	Name
	Synopsis
	Arguments
	Description

	ORTESleepMs
	Name
	Synopsis
	Arguments
	1.1.3.3. Macros

	SeqNumberCmp
	Name
	Synopsis
	Arguments
	Return

	SeqNumberInc
	Name
	Synopsis
	Arguments
	Description

	SeqNumberAdd
	Name
	Synopsis
	Arguments
	Description

	SeqNumberDec
	Name
	Synopsis
	Arguments
	Description

	SeqNumberSub
	Name
	Synopsis
	Arguments
	Description

	NtpTimeCmp
	Name
	Synopsis
	Arguments
	Return value

	NtpTimeAdd
	Name
	Synopsis
	Arguments
	Description

	NtpTimeSub
	Name
	Synopsis
	Arguments
	Description

	NtpTimeAssembFromMs
	Name
	Synopsis
	Arguments

	NtpTimeDisAssembToMs
	Name
	Synopsis
	Arguments

	NtpTimeAssembFromUs
	Name
	Synopsis
	Arguments

	NtpTimeDisAssembToUs
	Name
	Synopsis
	Arguments

	Domain2Port
	Name
	Synopsis
	Arguments

	Domain2PortMulticastUserdata
	Name
	Synopsis
	Arguments

	Domain2PortMulticastMetatraffic
	Name
	Synopsis
	Arguments

	1.1.4. Implementation issues
	1.1.5. Tests
	1.1.6. Examples
	1.1.7. Installation instructions

	1.2. Real Time Ethernet analyzer
	1.2.1. Sumary
	1.2.2. Description
	1.2.3. API / Compatibility
	1.2.4. Implementation issues
	1.2.5. Tests
	1.2.6. Examples
	1.2.7. Installation instructions

	Chapter 2. Linux/RTLinux CAN Driver (LinCAN)
	2.1. LinCAN Summary
	2.1.1. Summary

	2.2. LinCAN Driver Description
	2.2.1. Introduction

	2.3. LinCAN Driver System Level API
	2.3.1. Device Files and Message Structure
	2.3.2. CAN Driver File Operations
	open
	Name
	Synopsis
	Arguments
	Description

	close
	Name
	Synopsis
	Arguments
	Description

	read
	Name
	Synopsis
	Arguments
	Description

	write
	Name
	Synopsis
	Arguments
	Description

	struct canfiltt
	Name
	Synopsis
	Members

	IOCTL CANQUEFILTER
	Name
	Synopsis
	Arguments
	Description

	IOCTL CANQUEFLUSH
	Name
	Synopsis
	Arguments
	Description

	2.4. LinCAN Driver Architecture
	2.5. Driver History and Implementation Issues
	2.6. LinCAN Driver Internals
	2.6.1. Basic Driver Data Structures
	struct canhardwaret
	Name
	Synopsis
	Members

	struct candevicet
	Name
	Synopsis
	Members
	Description

	struct chipt
	Name
	Synopsis
	Members
	Description

	struct msgobjt
	Name
	Synopsis
	Members

	struct canusert
	Name
	Synopsis
	Members

	struct hwspecopst
	Name
	Synopsis
	Members

	struct chipspecopst
	Name
	Synopsis
	Members

	2.6.2. Board Support Functions
	templaterequestio
	Name
	Synopsis
	Arguments
	Description
	Return Value
	File

	templatereleaseio
	Name
	Synopsis
	Arguments
	Description
	Return Value
	File

	templatereset
	Name
	Synopsis
	Arguments
	Description
	Return Value
	File

	templateinithwdata
	Name
	Synopsis
	Arguments
	Description
	Return Value
	File

	templateinitchipdata
	Name
	Synopsis
	Arguments
	Description
	Return Value
	File

	templateinitobjdata
	Name
	Synopsis
	Arguments
	Description
	Return Value
	File

	templateprogramirq
	Name
	Synopsis
	Arguments
	Description
	Return value
	File

	templatewriteregister
	Name
	Synopsis
	Arguments
	Description
	Return Value
	File

	templatereadregister
	Name
	Synopsis
	Arguments
	Description
	Return Value
	File

	2.6.3. Chip Support Functions
	sja1000penableconfiguration
	Name
	Synopsis
	Arguments

	sja1000pdisableconfiguration
	Name
	Synopsis
	Arguments

	sja1000pchipconfig
	Name
	Synopsis
	Arguments
	Description
	Return Value
	File

	sja1000pextendedmask
	Name
	Synopsis
	Arguments
	Return Value
	File

	sja1000pbaudrate
	Name
	Synopsis
	Arguments
	Return Value
	File

	sja1000pread
	Name
	Synopsis
	Arguments
	File

	sja1000pprereadconfig
	Name
	Synopsis
	Arguments
	Return Value
	File

	sja1000pprewriteconfig
	Name
	Synopsis
	Arguments
	Description
	Return Value
	File

	sja1000psendmsg
	Name
	Synopsis
	Arguments
	Description
	Return Value
	File

	sja1000pchecktxstat
	Name
	Synopsis
	Arguments
	Return Value
	File

	sja1000psetbtregs
	Name
	Synopsis
	Arguments
	Return Value
	File

	sja1000pstartchip
	Name
	Synopsis
	Arguments
	Return Value
	File

	sja1000pstopchip
	Name
	Synopsis
	Arguments
	Return Value
	File

	sja1000premoterequest
	Name
	Synopsis
	Arguments
	Return Value
	File

	sja1000pstandardmask
	Name
	Synopsis
	Arguments
	Return Value
	File

	sja1000pclearobjects
	Name
	Synopsis
	Arguments
	Return Value
	File

	sja1000pconfigirqs
	Name
	Synopsis
	Arguments
	Return Value
	File

	sja1000pirqwritehandler
	Name
	Synopsis
	Arguments
	Description
	File

	sja1000pirqhandler
	Name
	Synopsis
	Arguments
	Description
	File

	sja1000pwakeuptx
	Name
	Synopsis
	Arguments
	Return Value
	File

	2.6.4. CAN Queues Common Structures and Functions
	struct canqueslott
	Name
	Synopsis
	Members
	Description

	struct canquefifot
	Name
	Synopsis
	Members
	Description

	canquefifogetinslot
	Name
	Synopsis
	Arguments
	Return Value

	canquefifoputinslot
	Name
	Synopsis
	Arguments
	Return Value

	canquefifoabortinslot
	Name
	Synopsis
	Arguments
	Return Value

	canquefifotestoutslot
	Name
	Synopsis
	Arguments
	Return Value

	canquefifofreeoutslot
	Name
	Synopsis
	Arguments
	Return Value

	canquefifoagainoutslot
	Name
	Synopsis
	Arguments
	Return Value

	struct canqueedget
	Name
	Synopsis
	Members
	Description

	struct canqueendst
	Name
	Synopsis
	Members
	Description

	canquenotifyinends
	Name
	Synopsis
	Arguments

	canquenotifyoutends
	Name
	Synopsis
	Arguments

	canquenotifybothends
	Name
	Synopsis
	Arguments

	canqueactivateedge
	Name
	Synopsis
	Arguments
	Description

	canquefiltid2internal
	Name
	Synopsis
	Arguments
	Description

	canquefifoflushslots
	Name
	Synopsis
	Arguments
	Description
	Return Value

	canquefifoinitslots
	Name
	Synopsis
	Arguments
	Return Value

	canquegetinslot
	Name
	Synopsis
	Arguments
	Description
	Return Value

	canquegetinslot4id
	Name
	Synopsis
	Arguments
	Description
	Return Value

	canqueputinslot
	Name
	Synopsis
	Arguments
	Description
	Return Value

	canqueabortinslot
	Name
	Synopsis
	Arguments
	Description
	Return Value

	canquefiltermsg2edges
	Name
	Synopsis
	Arguments
	Description
	Return Value

	canquetestoutslot
	Name
	Synopsis
	Arguments
	Description
	Return Value

	canquefreeoutslot
	Name
	Synopsis
	Arguments
	Description
	Return Value

	canqueagainoutslot
	Name
	Synopsis
	Arguments
	Description
	Return Value

	canquesetfilt
	Name
	Synopsis
	Arguments
	Return Value

	canqueflush
	Name
	Synopsis
	Arguments
	Description
	Return Value

	canqueueendsinitgen
	Name
	Synopsis
	Arguments
	Return Value

	canqueueconnectedge
	Name
	Synopsis
	Arguments
	Return Value

	canqueuedisconnectedge
	Name
	Synopsis
	Arguments
	Return Value

	canqueueblockinlist
	Name
	Synopsis
	Arguments

	canqueueblockoutlist
	Name
	Synopsis
	Arguments

	canqueueendskillinlist
	Name
	Synopsis
	Arguments
	Return Value

	canqueueendskilloutlist
	Name
	Synopsis
	Arguments
	Return Value

	2.6.5. CAN Queues Kernel Specific Functions
	canqueuenotifykern
	Name
	Synopsis
	Arguments
	Description

	canqueueendsinitkern
	Name
	Synopsis
	Arguments

	canquegetinslot4idwaitkern
	Name
	Synopsis
	Arguments
	Description
	Return Value

	canquegetoutslotwaitkern
	Name
	Synopsis
	Arguments
	Description
	Return Value

	canquesyncwaitkern
	Name
	Synopsis
	Arguments
	Description
	Return Value

	canquefifoinitkern
	Name
	Synopsis
	Arguments
	Return Value

	canquefifodonekern
	Name
	Synopsis
	Arguments

	canquenewedgekern
	Name
	Synopsis
	Arguments
	Return Value

	canqueueendsdisposekern
	Name
	Synopsis
	Arguments
	Return Value

	2.6.6. CAN Queues RTLinux Specific Functions
	canqueuertl2lincheckandpend
	Name
	Synopsis
	Arguments
	Return Value

	canquegetinslot4idwaitrtl
	Name
	Synopsis
	Arguments
	Description
	Return Value

	canquegetoutslotwaitrtl
	Name
	Synopsis
	Arguments
	Description
	Return Value

	canquesyncwaitrtl
	Name
	Synopsis
	Arguments
	Description
	Return Value

	canquefifoinitrtl
	Name
	Synopsis
	Arguments
	Return Value

	canquefifodonertl
	Name
	Synopsis
	Arguments

	canquenewedgertl
	Name
	Synopsis
	Arguments
	Return Value

	canqueuenotifyrtl
	Name
	Synopsis
	Arguments

	canqueueendsinitrtl
	Name
	Synopsis
	Arguments

	canqueueendsdisposertl
	Name
	Synopsis
	Arguments
	Return Value

	canqueuertlinitialize
	Name
	Synopsis
	Arguments

	canqueuertldone
	Name
	Synopsis
	Arguments

	2.6.7. CAN Queues CAN Chips Specific Functions
	canqueuenotifychip
	Name
	Synopsis
	Arguments
	Description

	canqueueendsinitchip
	Name
	Synopsis
	Arguments

	canqueueendsdonechip
	Name
	Synopsis
	Arguments
	Return Value

	2.6.8. CAN Boards and Chip Setup specific Functions
	cancheckedmalloc
	Name
	Synopsis
	Arguments
	Description
	Return Value

	cancheckedfree
	Name
	Synopsis
	Arguments

	candelmemlist
	Name
	Synopsis
	Arguments
	Description

	canrequestioregion
	Name
	Synopsis
	Arguments
	Description
	Return Value

	canreleaseioregion
	Name
	Synopsis
	Arguments

	canrequestmemregion
	Name
	Synopsis
	Arguments
	Description
	Return Value

	canreleasememregion
	Name
	Synopsis
	Arguments

	canbaseaddrfixup
	Name
	Synopsis
	Arguments
	Description

	registerobjstruct
	Name
	Synopsis
	Arguments
	Return Value

	registerchipstruct
	Name
	Synopsis
	Arguments
	Return Value

	inithwstruct
	Name
	Synopsis
	Arguments
	Description
	Return Value

	initdevicestruct
	Name
	Synopsis
	Arguments
	Description
	in the module parameters arrays
	Return Value

	initchipstruct
	Name
	Synopsis
	Arguments
	Description
	Return Value

	initobjstruct
	Name
	Synopsis
	Arguments
	Description
	Return Value

	inithwspecops
	Name
	Synopsis
	Arguments
	Description
	Return Value

	initchipspecops
	Name
	Synopsis
	Arguments
	Description
	Return Value

	canchipsetupirq
	Name
	Synopsis
	Arguments
	Return Value

	canchipfreeirq
	Name
	Synopsis
	Arguments

	2.6.9. CAN Boards and Chip Finalization Functions
	msgobjdone
	Name
	Synopsis
	Arguments

	canchipdone
	Name
	Synopsis
	Arguments

	candevicedone
	Name
	Synopsis
	Arguments

	canhardwaredone
	Name
	Synopsis
	Arguments

	2.7. LinCAN Usage Information
	2.7.1. Installation Prerequisites
	2.7.2. Quick Installation Instructions
	2.7.3. Installation instructions
	2.7.4. Simple Utilities
	readburst
	Name
	Synopsis
	Description
	OPTIONS

	sendburst
	Name
	Synopsis
	Description
	OPTIONS

	Chapter 3. CAN/CANopen
	3.1. Virtual CAN API (VCA)
	3.1.1. Summary
	3.1.2. Description
	3.1.3. API / Compatibility
	3.1.3.1. VCA API

	struct canmsgt
	Name
	Synopsis
	Members
	Header

	vcah2log
	Name
	Synopsis
	Arguments
	Header
	Return Value

	vcaopenhandle
	Name
	Synopsis
	Arguments
	Header
	Return Value

	vcaclosehandle
	Name
	Synopsis
	Arguments
	Header
	Return Value

	vcasendmsgseq
	Name
	Synopsis
	Arguments
	Header
	Return Value

	vcarecmsgseq
	Name
	Synopsis
	Arguments
	Header
	Return Value

	vcawait
	Name
	Synopsis
	Arguments
	Header
	Return Value

	vcalog
	Name
	Synopsis
	Arguments
	Description
	Note

	vcalogredir
	Name
	Synopsis
	Arguments

	3.1.4. Implementation issues
	3.1.5. Tests
	3.1.6. Examples
	3.1.7. Installation instructions

	3.2. CAN device
	3.2.1. Summary
	3.2.2. Description
	3.2.3. API / Compatibility
	3.2.3.1. PDO processor API

	struct vcapdomappingt
	Name
	Synopsis
	Members

	struct vcapdolstobjectt
	Name
	Synopsis
	Members
	pdobuff

	struct vcapdolstroott
	Name
	Synopsis
	Members

	struct vcaPDOProcessort
	Name
	Synopsis
	Members
	Description

	vcaPDOProcessorinit
	Name
	Synopsis
	Arguments

	vcaPDOProcessordestroy
	Name
	Synopsis
	Arguments
	Description

	vcaPDOProcessorsetOD
	Name
	Synopsis
	Arguments

	vcaPDOProcessorcreatePDOList
	Name
	Synopsis
	Arguments
	Description
	Return

	vcaPDOProcessordisconnectDinfoLinks
	Name
	Synopsis
	Arguments
	Description

	vcaPDOProcessormakeDinfoLinks
	Name
	Synopsis
	Arguments
	Description

	vcaPDOProcessorprocessMsg
	Name
	Synopsis
	Arguments
	Return
	3.2.3.2. SDO FSM API

	struct vcasdofsmt
	Name
	Synopsis
	Members

	vcasdofsmupload1
	Name
	Synopsis
	Arguments

	vcasdofsmdownload1
	Name
	Synopsis
	Arguments

	vcasdoreadmultiplexor
	Name
	Synopsis
	Arguments

	vcasdoerrormsg
	Name
	Synopsis
	Arguments

	vcasdoinitfsm
	Name
	Synopsis
	Arguments

	vcasdodestroyfsm
	Name
	Synopsis
	Arguments

	vcasdofsmidle
	Name
	Synopsis
	Arguments

	vcasdofsmrun
	Name
	Synopsis
	Arguments

	vcasdofsmabort
	Name
	Synopsis
	Arguments

	vcasdofsmupload
	Name
	Synopsis
	Arguments
	Description

	vcasdofsmdownload
	Name
	Synopsis
	Arguments
	Description

	vcasdofsmtastemsg
	Name
	Synopsis
	Arguments
	Return Value

	vcasdoabortmsg
	Name
	Synopsis
	Arguments
	Header
	3.2.3.3. Object Dictionary API

	struct vcaodroott
	Name
	Synopsis
	Members
	Header

	struct vcaodobjectt
	Name
	Synopsis
	Members
	Header

	vcaodfindobject
	Name
	Synopsis
	Arguments
	Returns
	Header

	vcaodgetvalue
	Name
	Synopsis
	Arguments
	Returns
	Header

	vcaodsetvalue
	Name
	Synopsis
	Arguments
	Returns
	Header

	vcaododfree
	Name
	Synopsis
	Arguments
	Header

	vcaodloadeds
	Name
	Synopsis
	Arguments
	Returns
	Header

	vcaoddumpod
	Name
	Synopsis
	Arguments
	Header

	vcaodgetdinforef
	Name
	Synopsis
	Arguments
	Description
	Returns
	Header
	3.2.3.4. canslave command line parameters
	3.2.3.5. CANmaster command line parameters

	3.2.4. Implementation issues
	3.2.4.1. Architecture overview
	CANopen device components description

	3.2.4.2. CANopen slave
	3.2.4.3. CANopen master

	3.2.5. Tests
	3.2.6. Examples
	3.2.7. Installation instructions

	3.3. CAN monitor
	3.3.1. Summary
	3.3.2. Description
	3.3.2.1. canmond CAN/CANopen proxy
	3.3.2.2. testclient
	3.3.2.3. CanMonitor

	3.3.3. API / Compatibility
	3.3.3.1. canmond
	3.3.3.2. testclient
	3.3.3.3. CanMonitor

	3.3.4. Implementation issues
	3.3.4.1. canmond

	3.3.5. Tests
	3.3.6. Examples
	3.3.6.1. Example 1 connecting to real CANopen device
	3.3.6.2. Example 2

	3.3.7. Installation instructions

	Chapter 4. Verifications
	4.1. CAN model by timed automata
	4.1.1. Sumary
	4.1.2. Description
	4.1.2.1. Problem statement
	4.1.2.2. CAN bus description
	4.1.2.2.1. Realtime data transmission
	4.1.2.2.2. Message frame formats
	4.1.2.2.3. Detecting and signalling errors

	4.1.3. API/Compatibility
	4.1.4. Implementation issues
	4.1.4.1. Bitwise arbitration model
	4.1.4.2. Transceiver model
	4.1.4.3. Bus model

	4.1.5. Tests
	4.1.6. Examples
	4.1.6.1. Case study 1 Application process model
	4.1.6.1.1. Comparison with traditional approach

	4.1.6.2. Case study 2 Antilock Braking System
	4.1.6.2.1. Verification

	4.1.7. Installation instructions
	Bibliography

	4.2. Verification of cooperative scheduling and interrupt handlers
	4.2.1. Sumary
	4.2.2. Description
	4.2.2.1. Abstract
	4.2.2.2. Introduction

	4.2.3. API/Compatibility
	4.2.4. Implementation issuses
	4.2.4.1. Cooperative scheduling
	4.2.4.2. Interrupts
	4.2.4.3. Inter process communication primitives
	4.2.4.3.1. Semaphore

	4.2.4.4. Conclusion and future work

	4.2.5. Implementation issuses
	4.2.6. Tests
	4.2.7. Examples
	4.2.7.1. Example of system with interrupt
	Bibliography

