WP7 - Communication Components

© -

3

Deliverable D7.3 - Design of new
communication drivers

WP7 - Communication components : Deliverable 7.3 - Design of new communication drivers
by Pavel Pisa
by Frantisek Vacek

Published July 2003
Copyright © 2003 by OCERA Consortium

Table of Contents

1. Linux CAN Driver (LINCAN) 1
1.1, SUINIMNATY tevvveiiieeeiiiiiiiieeee e ceseiierreeeereeeesesessrsrsrsssesessserssssssrassresssesssssssrsssssssessnnrans 1
B B LYol] oY o) AU 1
1.3. API/ Compatibilitycueeeiiiieieiiiiiireieieeeeeeieiiinrieeeeeseesseissnssreesressessssrsssrsssssssesssssens 2

1.3.1. Driver APT OVEIrVIEWcccccieviriiieiieeeieiniiiierereeeeessssssisrsesssessesssssssssssesees 2
1.3.2. CAN Driver File Operationsccccccceveevirvrrrereeeeseiessirneereessessesssssseneesees 3
OPBTL 1uuuneeeertuuuieeeeeerersuneeeseersssnesaseseesssssssaseseesssssnsessseesssssnsessssssssnsnnessssasssnnnns 3
ClOS ceiiiiieeeittt ettt e e e e e e e et aaeaeaeeea e n—a—araraeeaaaaaatntaraeaaeaeaaarans 3
TEAM ...iiiiieeiiiet ettt e eectte e eee et e e erteeeeesataeeeeeataeeeeaataeeeentaeeeeenraeesennntaeaannes 4
7 1 11D PUSUPURUP PN 4
1.3.3. Driver Board Support Interface.........ccceeevivieieiiiiiiciieieceieee e 5
template_request_10......ccccviiieiiie et a e e e e e 5

173008 o) E2 Lol =) (T T (o TSN 5
EMPLALE_TESEL coveiiiiiieeeeeee et e e e e e e 6
template_init_hw_data.........ccccoeeeeieiiiiiiieic e 6
template_init_chip_data........cccceeeieoiiiiiiiiieeceeee e 7
template_init_obj_data.........cccceeeeieeiiiiiiieee e 8
template_program_irQ........cccccceeeeeeeeeiiiieeeee e e eercreree e e e e e e eeeeenrraeeeeeeeeaas 8
template_Write_regiStercccivieieeiiiiieee e 9
template_read_regiSter..........ooviiiieieieieiieeecee e eeaeeeeeeeeeeenes 9
1.3.4. Driver Chip Support Interface..........cccceouvriieieiiieeiciiieeee e, 10
§ja1000p_chip_CONnfigcceeeeeiiiiiiieiiecec e 10
5ja1000p_extended_masKccccuviieierieeeeeiiiiieeeeeeeeeseeree e e e e e e e e 10
§jal000p_baud_rate.......ccccceeeeiiiieeiieeececeeeeeeeerereeeerer e 11
SJAT000DP_TEAM ..eeeeieeeeeeeeeeeeeee et 12
§jal000p_pre_read_CONnfigccevvvvrrreeeeeeieiiirnrreeereeessisisrssreeseeresesssssssnens 12
§jal000p_pre_write_configcccccveviiiiiiiiiieeieeeeeeeeeeeereeeeeerer e aaaeaes 12
SJA1000P_SENA_INSE ..vvvrrrrereeeieiiiirrrerrrereeeeieisrsrereessressssrssssssressessesessesssnsns 13
§jal000p_check_tx_stat........cccccceeiiiiiiiiiieeeeeeeeceeeceerer s 14
SJA1000P_SEL_DUIEES...cceeeeeeeeeieeeeeeeeeee e 14
SJA1000P_StATt_CRIP ..uvvireeeiieeieiiiiiiieeiee e eeeeerirrree e e e e e esesearrsrereeeeesessessnnens 15

S E R K00 T o) I ¢l s N o YN 15
§jal000p_remote_request.........ccceveeeiiiiiieieieeerereeeeeereeererreeerer e 15
§jal000p_standard_mask...........cccceeveiiieeieiiieieceeeerereeereeeeeerer e 16
Sja1000p_clear_0DJECS.......cccieiviiirrrirrierieeeierinrrrreeereeessisresreeeeesesessesssnnens 16
SJA1000DP_CONTIG ITGS uvvrrreereeeieiiiiirrrrrereeeeeereiisrereeeereeeseissssssressessesessessssnens 17
sja1000p_irg_write_handler............cccceeeeeeiiiiiiiiieeee e e 17
§jal1000p_irg _handlercccccevevivrireieiieeeieinrerereee e eeerenrsreeeeesesessessnnnens 18

1.4. Implementation ISSUES.......cccccciiriieieeeeeeeeccirte e e e e e e e eseeerareeeeeeeseesanssreeaseseaeanans 18
LD TSt cuuurrrrreretteereiiiirreeeeeeeeeesesraraeeeeeeeesssssnrrraeeeeesesssssssnrnnasesesenssssnrnranaseesessnans 20
1.6, EXAMPLES .ooeiiiiiiiiiiiieee ettt e e e e et re e e e e e e e e etnraa e e e e e e e e e e nnrnraraaeaeeeanns 20
1.7. Installation INStructions..........cccuiiiiiiii e e e e e e 20
1.7.1. Installation PrerequiSitescccccceeeeiieeciiieeiee e e e eenreeee s 20
1.7.2. Quick Installation INSErUCLIONSevuvveieeieeiicccece e ee e e e e 21
1.7.3. More Installation InStructions...............eeeuereieieiiiiiicieceeeeeeeeeeeeeeeeeeeennnn 21

i

Chapter 1. Linux CAN Driver (LINCAN)

The LINCAN is an implementation of the Linux device driver supporting more CAN
controller chips and many CAN interface boards. Its implementation has long history
already. The OCERA version of the driver adds new features, continuous enhancements
and reimplementation of structure of the driver. The usage of the driver is tightly cou-
pled to the virtual CAN API interface component which hides driver low level interface
to the application programmers.

1.1. Summary

Name of the component

Linux CAN Driver (LINCAN)
Author

Arnaud Westenberg

Tomasz Motylewski

Pavel Pisa

Reviewer
The previous driver versions were tested by more users. The actual version was
tested at CTU by more OCERA developers and by BFAD GmbH, which use pre-
OCERA and current version of the driver in their products.
Layer
High-level available
Version
0.7-pi3.4 alpha
Status
Alpha
Dependencies
The driver requires CAN interface hardware.
Linux kernels from 2.2.x and 2.4.x series are fully supported.
Support for latest 2.5.x and future 2.6.x. is in preparation

The use of VCA API library is suggested for seamless application transitions be-
tween driver kinds and versions.

Release date
N/A

1.2. Description

The LINCAN driver is the loadable module for the Linux kernel which implements CAN
driver. The driver communicates and controls one or more CAN controllers chips. The
each chip/CAN interface is represented to the applications as one or more CAN message
objects through the character device interface. The application can open the character
device and use read/write system calls for CAN messages transmission or reception
through the connected message object. The parameters of the message object can be
modified by the TOCTL system call. The closing of the character device releases resources
allocated by the application.

The present version of the driver supports three most common CAN controllers:

» Intel 182527 chips
 Philips 82¢200 chips

Chapter 1. Linux CAN Driver (LINCAN)

 Philips SJA1000 chips in standard and PeliCAN mode

The intelligent CAN/CANopen cards should be supported by future versions. One of such
cards is P-CAN series of cards produced by Unicontrols. The driver contains support for
more than ten CAN cards basic types with different combinations of the above men-
tioned chips. Not all card types are held by OCERA members, but CTU has and tested
more SJA1000 type cards and will test some 182527 cards in near future.

1.3. API / Compatibility

1.3.1. Driver API Overview

Each driver is a subsystem which has no direct application level API. The operating
system is responsible for user space calls transformation into driver functions calls or
dispatch routines invocations. The CAN driver is implemented as a character device
with the standard device node names /dev/can0, /dev/canl, etc. The application pro-
gram communicates with the driver through the standard system low level input/output
primitives (open, close, read, write, select and ioct1). The CAN driver convention
of usage of these functions is described in the next subsection.

The read and write functions need to transfer one or more CAN messages. The struc-
ture canmsg_t is defined for this purpose and is defined in include file can/can.h. The
canmsg_t structure has next fields:

struct canmsg_t {
short flags;
int cob;
unsigned long id;
unsigned long timestamp;
unsigned int length;
unsigned char
data[CAN_MSG_LENGTH];

} PACKED;

flags
The flags field holds information about message type. The bit MSG_RTR marks re-
mote transmission request messages. Writing of such message into the CAN mes-
sage object handle results in transmission of the RTR message. The RTR message
can be received by the read call if no buffer with corresponding ID is pre-filled in
the driver. The bit MSG_EXT indicates that the message with extended (29 bit) ID
will be send or was received. The bit MSG_OVR is intended for fast indication of the
reception message queue overfill.

cob
The field reserved for a holding message communication object number. It could
be used for serialization of received messages from more message object into one
message queue in the future.

id
CAN message ID.

timestamp
The field intended for storing of the message reception time.

length
The number of the data bytes send or received in the CAN message. The number of
data load bytes is from O to 8.

data
The byte array holding message data.

As was mentioned above, direct communication with the driver through system calls

is not encouraged because this interface is partially system dependent and cannot be

ported to all environments. The suggested alternative is to use OCERA provided VCA

OCERA. IST 35102 2

Chapter 1. Linux CAN Driver (LINCAN)

library which defines the portable and clean interface to the CAN driver implementa-
tion.

The other issue is addition of the support for new CAN interface boards and CAN con-
troller chips. The subsection Driver Board Support Interface describes template func-
tions, which needs to be implemented for newly supported board. The template of board
support can be found in the file src/template.c.

The other task for more brave souls is addition of the support for the unsupported chip
type. The source supporting the SJA1000 chip in the PeliCAN mode can serve as an
example. The full source of this chip support is stored in the file src/s35a1000p.c. The
subsection Driver Chip Support Interface describes basic functions necessary for the
new chip support.

1.3.2. CAN Driver File Operations

open

Name

open — message communication object open system call

Synopsis

int open (const char * pathname, int flags);

Arguments

pathname
The path to driver device node is specified there. The conventional device names for
Linux CAN driver are /dev/can0, /dev/canl, etc.

flags
flags modifying style of open call. The standard O_RDWR mode should be used for
CAN device. The mode O_NOBLOCK can be used with driver as well. This mode re-
sults in immediate return of read and write.

Description

Returns negative number in the case of error. Returns the file descriptor for named CAN
message object in other cases.

close

Name

close — message communication object close system call

Synopsis

int close (int fd);

OCERA. IST 35102 3

Chapter 1. Linux CAN Driver (LINCAN)

Arguments
fd

file descriptor to opened can message communication object

Description

Returns negative number in the case of error.

read

Name

read — reads received CAN messages from message object

Synopsis

ssize_t read(int fd, void * buf, size_t count);

Arguments
fd

file descriptor to opened can message communication object
buf

pointer to array of canmsg_t structures.
count

size of message array buffer in number of bytes

Description

Returns negative value in the case of error else returns number of read bytes which is
multiple of canmsg_t structure size.

write

Name

write — writes CAN messages to message object for transmission

Synopsis

ssize_t write(int fd, const void * buf, size_t count);

Arguments

fd
file descriptor to opened can message communication object
buf
pointer to array of canmsg_t structures.
count
size of message array buffer in number of bytes. The parameter informs driver about

number of messages prepared for transmission and should be multiple of canmsg_t
structure size.

OCERA. IST 35102 4

Chapter 1. Linux CAN Driver (LINCAN)

Description

Returns negative value in the case of error else returns number of bytes successfully
stored into message object transmission queue. The positive returned number is multi-
ple of canmsg_t structure size.

1.3.3. Driver Board Support Interface
template_request_io

Name

template_request_io — reserve io memory

Synopsis

int template_request_io (unsigned long io_addr);

Arguments

io_addr

The reserved memory starts at io_addr, which is the module parameter io.

Description

The function template_request_io is used to reserve the io-memory. If your hard-
ware uses a dedicated memory range as hardware control registers you will have to add
the code to reserve this memory as well. TO_RANGE is the io-memory range that gets
reserved, please adjust according your hardware. Example: #define IO_RANGE 0x100
for 182527 chips or #define IO_RANGE 0x20 for sja1000 chips in basic CAN mode.

Return Value

The function returns zero on success or —ENODEV on failure

File

src/template.c

template_release_io

Name

template_release_io — free reserved io-memory

Synopsis

int template_ release io (unsigned long io_addr);

Arguments

lo_addr

Start of the memory range to be released.

OCERA. IST 35102 5

Chapter 1. Linux CAN Driver (LINCAN)

Description

The function template_release_io is used to free reserved io-memory. In case you
have reserved more io memory, don’t forget to free it here. IO_RANGE is the io-memory

range that gets released, please adjust according your hardware. Example: #define
IO_RANGE 0x100 for 182527 chips or #define IO_RANGE 0x20 for sjal000 chips in
basic CAN mode.

Return Value

The function always returns zero

File

src/template.c

template_reset

Name

template_reset — hardware reset routine

Synopsis

int template_reset (int card);

Arguments

card

Number of the hardware card.

Description

The function template_reset isused to give a hardware reset. This is rather hardware
specific so I haven’t included example code. Don’t forget to check the reset status of the
chip before returning.

Return Value

The function returns zero on success or —ENODEV on failure

File

src/template.c

template_init_hw_data

Name

template_init_hw_data — Initialize hardware cards

Synopsis

int template_init hw data (int card);

OCERA. IST 35102 6

Chapter 1. Linux CAN Driver (LINCAN)

Arguments

card
Number of the hardware card.

Description

The function template_init_hw_data is used to initialize the hardware structure
containing information about the installed CAN-board. RESET_ADDR represents the io-
address of the hardware reset register. NR_82527 represents the number of Intel 82527
chips on the board. NR_SJA1000 represents the number of Philips sja1000 chips on the
board. The flags entry can currently only be PROGRAMMABLE_IRQ to indicate that the
hardware uses programmable interrupts.

Return Value

The function always returns zero

File

src/template.c

template_init_chip_data

Name

template_init_chip_data — Initialize chips

Synopsis

int template_init chip data (int card, int chipnr);

Arguments

card
Number of the hardware card
chipnr

Number of the CAN chip on the hardware card

Description

The function template_init_chip_data is used to initialize the hardware structure
containing information about the CAN chips. CHIP_TYPE represents the type of CAN
chip. CHIP_TYPE can be “i82527” or “sja1000”. The chip_base_addr entry represents
the start of the ’official’ memory map of the installed chip. It’s likely that this is
the same as the io_addr argument supplied at module loading time. The clock
entry holds the chip clock value in Hz. The entry sja_cdr_reg holds hardware
specific options for the Clock Divider register. Options defined in the sja1000.h
file: CDR_CLKOUT_MASK, CDR_CLK_OFF, CDR_RXINPEN, CDR_CBP, CDR_PELICAN
The entry sja _ocr._reg holds hardware specific options for the Output Control
register. Options defined in the s§a1000.h file: OCR_MODE_BIPHASE, OCR_MODE_TEST,
OCR_MODE_NORMAL, OCR_MODE_CLOCK, OCR_TX0_LH, OCR_TX1_ZZ. The entry
int_clk_reg holds hardware specific options for the Clock Out register. Options
defined in the 182527.h file: iC1L.K_CDO, iCLK_CD1, iCLK_CD2, iCLK_CD3, iCLK_STL0,
iCLK_SL1. The entry int_bus_reg holds hardware specific options for the Bus
Configuration register. Options defined in the i82527.h file: iBUS_DRO, iBUS_DRI,
iBUS_DT1, iBUS_POL, iBUS_CBY. The entry int_cpu_reg holds hardware specific

OCERA. IST 35102 7

Chapter 1. Linux CAN Driver (LINCAN)

options for the cpu interface register. Options defined in the 182527.h file: iCPU_CEN,
iCPU_MUX, iCPU_SLP, 1CPU_PWD, iCPU_DMC, 1CPU_DSC, iCPU_RST.

Return Value

The function always returns zero

File

src/template.c

template_init_obj_data

Name

template_init_obj_data — Initialize message buffers

Synopsis

int template_init_obj_data (int chipnr, int objnr);

Arguments

chipnr
Number of the CAN chip
objnr

Number of the message buffer

Description

The function template_init_obj_data is used to initialize the hardware structure
containing information about the different message objects on the CAN chip. In case
of the sja1000 there’s only one message object but on the 182527 chip there are 15.
The code below is for a 182527 chip and initializes the object base addresses The en-
try obj_base_addr represents the first memory address of the message object. In case
of the sjal000 obj_base_addr is taken the same as the chips base address. Unless the
hardware uses a segmented memory map, flags can be set zero.

Return Value

The function always returns zero

File

src/template.c

template_program_irq

Name

template_program_irg — program interrupts

Synopsis

int template_program irq (int card);

OCERA. IST 35102 8

Chapter 1. Linux CAN Driver (LINCAN)

Arguments

card

Number of the hardware card.

Description

The function template_program_irqg is used for hardware that uses programmable
interrupts. If your hardware doesn’t use programmable interrupts you should not set the
candevices_t->flags entry to PROGRAMMABLE IRQ and leave this function unedited.
Again this function is hardware specific so there’s no example code.

Return value

The function returns zero on success or ~-ENODEV on failure

File

src/template.c

template_write_register

Name

template_write_register — Low level write register routine

Synopsis

void template write register (unsigned char data, unsigned long address);

Arguments

data
data to be written
address

memory address to write to

Description

The function template_write_register is used to write to hardware registers on the
CAN chip. You should only have to edit this function if your hardware uses some specific
write process.

Return Value

The function does not return a value

File

src/template.c

template_read_register

Name

template_read_register — Low level read register routine

OCERA. IST 35102 9

Chapter 1. Linux CAN Driver (LINCAN)

Synopsis

unsigned template_read_register (unsigned long address);

Arguments

address
memory address to read from

Description

The function template_read_register is used to read from hardware registers on
the CAN chip. You should only have to edit this function if your hardware uses some
specific read process.

Return Value

The function returns the value stored in address

File

src/template.c

1.3.4. Driver Chip Support Interface
sjal000p_chip_config

Name
5jal000p_chip_config — can chip configuration

Synopsis

int s3jal000p_chip config (struct chip_t * chip);

Arguments
chip
pointer to chip state structure

Description

This function configures chip and prepares it for message transmission and reception.
The function resets chip, resets mask for acceptance of all messages by call to
sjal000p_extended_mask function and then computes and sets baudrate with use of
function s 7a1000p_baud_rate.

Return Value

negative value reports error.

File
src/sjal000p.c

OCERA. IST 35102 10

Chapter 1. Linux CAN Driver (LINCAN)

sjal000p_extended_mask

Name

sjal000p_extended_mask — setup of extended mask for message filtering

Synopsis

int sjal000p_extended mask (struct chip_t * chip, unsigned long code, unsigned long mask) ;

Arguments
chip

pointer to chip state structure
code

can message acceptance code
mask

can message acceptance mask

Return Value

negative value reports error.

File
src/sjal000p.c

sjal000p_baud_rate

Name

$jal000p_baud_rate — set communication parameters.

Synopsis

int s3jal000p_baud rate (struct chip_t * chip, int rate, int clock, int sjw, int sampl_pt, int
flags);

Arguments
chip
pointer to chip state structure
rate
baud rate in Hz
clock
frequency of sja1000 clock in Hz (ISA osc is 14318000)
sjw
synchronization jump width (0-3) prescaled clock cycles
sampl_pt
sample point in % (0-100) sets (TSEG1+1)/(TSEG1+TSEG2+2) ratio
flags
fields BTR1_SAM, OCMODE, OCPOL, OCTP, OCTN, CLK_OFF, CBP

OCERA. IST 35102 11

Chapter 1. Linux CAN Driver (LINCAN)

Return Value

negative value reports error.

File
src/sjal1000p.c

sjal000p_read

Name

sjal000p_read — reads and distributes one or more received messages

Synopsis

void sjal000p_read (struct chip_t * chip, struct canfifo_t * fifo);

Arguments
chip
pointer to chip state structure
fifo
pinter to CAN message queue information
File
src/sjal000p.c

sjal000p_pre_read_config

Name

sjal000p_pre_read_config — prepares message object for message reception

Synopsis

int s3jal000p_pre_read_config (struct chip_t * chip, struct msgobj_t * obj);

Arguments
chip
pointer to chip state structure
obj
pointer to message object state structure

Return Value

negative value reports error. Positive value indicates immediate reception of message.

File
src/sjal000p.c

OCERA. IST 35102 12

Chapter 1. Linux CAN Driver (LINCAN)

sjal000p_pre_write_config

Name

sjal000p_pre_write_config — prepares message object for message transmission

Synopsis

int sjal000p_pre_write_config (struct chip_t * chip, struct msgobj_t * obj, struct canmsg_t *
msg) ;

Arguments
chip
pointer to chip state structure
obj
pointer to message object state structure
msg

pointer to CAN message

Description

This function prepares selected message object for future initiation of message trans-
mission by sja1000p_send_msg function. The CAN message data and message ID are
transfered from msg slot into chip buffer in this function.

Return Value

negative value reports error.

File
src/sjal000p.c

sjal000p_send_msg

Name

sjal000p_send_msg — initiate message transmission

Synopsis

iint sjal000p_send msg (struct chip_t * chip, struct msgobj_t * obj, struct canmsg_t * msq);

Arguments
chip
pointer to chip state structure
obj
pointer to message object state structure
msg

pointer to CAN message

OCERA. IST 35102 13

Chapter 1. Linux CAN Driver (LINCAN)

Description

This function is called after s§a1000p_pre_write_config function, which prepares
data in chip buffer.

Return Value

negative value reports error.

File
sre/sjal1000p.c

sjal000p_check_tx_stat

Name

sjal000p_check_tx_stat — checks state of transmission engine

Synopsis

int s3jal000p_check_tx_stat (struct chip_t * chip);

Arguments
chip
pointer to chip state structure

Return Value

negative value reports error. Positive return value indicates transmission under way
status. Zero value indicates finishing of all issued transmission requests.

File
sre/sjal000p.c

sjal000p_set_btregs

Name

sjal000p_set_btregs — configures bitrate registers

Synopsis

int s3jal000p_set_btregs (struct chip_t * chip, unsigned short btr0, unsigned short btrl);

Arguments
chip
pointer to chip state structure
btro
bitrate register 0
btrl
bitrate register 1

OCERA. IST 35102 14

Chapter 1. Linux CAN Driver (LINCAN)

Return Value

negative value reports error.

File
src/sjal1000p.c

sjal000p_start_chip

Name

sjal000p_start_chip — starts chip message processing

Synopsis

int s3jal000p_start_chip (struct chip_t * chip);

Arguments
chip
pointer to chip state structure

Return Value

negative value reports error.

File
src/sjal000p.c

sjal000p_stop_chip

Name
sjal000p_stop_chip — stops chip message processing

Synopsis

int s3jal000p_stop_chip (struct chip_t * chip);

Arguments
chip
pointer to chip state structure

Return Value

negative value reports error.

File
src/sjal000p.c

OCERA. IST 35102 15

Chapter 1. Linux CAN Driver (LINCAN)

sjal000p_remote_request

Name

sjal000p_remote_request — configures message object and asks for RTR message

Synopsis

int sjal000p_remote_request (struct chip_t * chip, struct msgobj_t * obj);

Arguments
chip
pointer to chip state structure
obj
pointer to message object structure

Return Value

negative value reports error.

File
sre/sjal1000p.c

sjal000p_standard_mask

Name

sjal000p_standard_mask — setup of mask for message filtering

Synopsis

int s3jal000p_standard _mask (struct chip_t * chip, unsigned short code, unsigned short mask);

Arguments
chip

pointer to chip state structure
code

can message acceptance code
mask

can message acceptance mask

Return Value

negative value reports error.

File
src/sjal000p.c

OCERA. IST 35102 16

Chapter 1. Linux CAN Driver (LINCAN)

sjal000p_clear_objects

Name
sjal000p_clear_objects — clears state of all message object residing in chip

Synopsis

int sjal000p_clear_objects (struct chip_t * chip);

Arguments
chip
pointer to chip state structure

Return Value

negative value reports error.

File
src/sjal000p.c

sjal000p_config_irqgs

Name

sjal000p_config_irgs — tunes chip hardware interrupt delivery

Synopsis

int s3jal000p_config_irqgs (struct chip_t * chip, short irgs);

Arguments
chip

pointer to chip state structure
irgs

requested chip IRQ configuration

Return Value

negative value reports error.

File
src/sjal000p.c

sjal000p_irq_write_handler

Name

sjal000p_irg_write_handler — part of ISR code responsible for transmit events

OCERA. IST 35102 17

Chapter 1. Linux CAN Driver (LINCAN)

Synopsis

void sjal000p_irq write_handler (struct chip_t * chip, struct canfifo_t * fifo);

Arguments
chip
pointer to chip state structure
fifo
pointer to attached queue description

Description

The main purpose of this function is to read message from attached queues and
transfer message contents into CAN controller chip. This subroutine is called by
53al1000p_irg write_handler for transmit events.

File
sre/sjal1000p.c

sjal000p_irq_handler

Name

s3al000p_1irg_handler — interrupt service routine

Synopsis

void sjal000p_irq handler (int irg, void * dev_id, struct pt_regs * regs);

Arguments
irqg
interrupt vector number, this value is system specific
dev_1id
driver private pointer registered at time of request_irqg call. The CAN driver uses
this pointer to store relationship of interrupt to chip state structure - st ruct chip_t
regs

system dependent value pointing to registers stored in exception frame

Description

Interrupt handler is activated when state of CAN controller chip changes, there is mes-
sage to be read or there is more space for new messages or error occurs. The receive
events results in reading of the message from CAN controller chip and distribution of
message through attached message queues.

File
src/sjal1000p.c

OCERA. IST 35102 18

Chapter 1. Linux CAN Driver (LINCAN)

1.4. Implementation issues

The development of the CAN drivers for Linux has long history. We have been faced

before two basic alternatives, start new project from scratch or use some other project as

basis of our development. The first approach would probably lead faster to more simple

and clean internal architecture but it would mean to introduce new driver with probably

incompatible interface unusable for already existing applications. The support of many

types of cards is thing which takes long time as well. More existing projects aimed to

development of a Linux CAN driver has been analyzed:

Original LDDK CAN driver project
The driver project aborted on the kernel evolution and LDDK concept. The LDDK
tried to prepare infrastructure for development of the kernel version independent
character device drivers written in meta code. The goal was top-ranking, but it
proves, that well written "C" language driver can be more portable than the LDDK
complex infrastructure.

can4linux-0.9 by PORT GmbH
This is version of the above LDDK driver maintained by Port GmbH. The card type
is hard compiled into the driver by selected defines and only Philips 82¢200 chips
are supported.

CanFestival
The big advantage of this driver is an integrated support for the RT-Linux, but
driver implementation is highly coupled to one card. Some concepts of the driver
are interesting but the driver has the hardcoded number of message queues.

can-0.7.1 by Arnaud Westenberg
This driver has its roots in the LDDXK project as well. The original LDDK concept
has been eliminated in the driver source and necessary adaptation of the driver
for the different Linux kernel versions is achieved by the controllable number of
defines and conditional compilation. There is more independent contributors. The
main advantages of the driver are support of many cards working in parallel, IO
and memory space chip connection support and more cards of different types can
be selected at module load time. There exist more users and applications compat-
ible with the driver interface. Disadvantages of the original version of this driver
are non-optimal infrastructure, non-portable make system and lack of the select
support.

The responsible OCERA developers selected the can-0.7.1 driver as a base of their de-

velopment for next reasons:

» Best support for more cards in system

» Supports for many types of cards

» The internal abstraction of the peripheral access method and the chip support
The most important features added in the first stage of OCERA development are:

« Added the select system call support

» The support for our memory mapped ISA card added, which proved simplicity of ad-
dition of the support for new type of CAN cards

« Revised and bug-fixed the IRQ support

» Rebuilt the make system to compile options fully follow the running kernel options,
cross-compilation still possible when the kernel location and compiler is specified.
The driver checked with more 2.2.x and 2.4.x kernels and hardware configurations.

(compiles even with latest 2.5.x kernels for UP, but needs more work to be ready for
2.6.x kernels)

* Added devfs support
We are planning next changes in the driver in the next stage of the development

» Full support for 2.6.x kernels

OCERA. IST 35102 19

Chapter 1. Linux CAN Driver (LINCAN)

e The second deeper rebuilt of the driver infrastructure to enable porting to more
systems (most important RT-Linux). The big advantage of continuous development
should be ability to keep compatibility with many cards and applications

» Support for multiple opening of the single minor device

» Support for intelligent CAN/CANopen cards

» PCI and USB hardware hot-swapping and PnP recognition
The

1.5. Tests

No heavy tests have been run yet. The driver has been used with more CAN devices
(commercial and CTU made) on more Linux system setups (different kernels 2.4.18,
2.4.19, 2.2.19, 2.2.22) with more compilers (GCC 2.95.3 and 3.2.x). The test application
from the driver sources and VCA API sources has been tested. The driver is used for the
CanMonitor development and other CTU CAN related projects. The success has been
reported from the BFAD company as well.

1.6. Examples

The simple test utilities can be found in the utils subdirectory of the LINCAN driver
source subtree. These utilities can be used as base for user programs directly communi-
cating with the LINCAN driver. We do not suggest to build applications directly depen-
dent on the driver operating system specific interface. We suggest to use the VCA API
library for communication with the driver which brings higher level of system interface
abstraction and ensures compatibility with the future versions of LINCAN driver and
RT-Linux driver clone versions.

The basic utilities provided with LINCAN driver are:

rxtx
the simple utility to receive or send message which guides user through operation,
the message type, the message ID and the message contents by simple prompts

send
even more simplistic message sending program

readburst
the utility for continuous messages reception and printing of the message contents.
This utility can be used as an example of the select system call usage.

sendburst
the periodic message generator. Each message is filled by the constant pattern and
the message sequence number. This utility can be used for throughput and message
drops tests.

can-proxy
the simple TCP/IP to CAN proxy. The proxy receives simple commands from TP
datagrams and processes command sending and state manipulations. Received mes-
sages are packed into IP datagrams and send back to the client.

1.7. Installation Instructions

1.7.1. Installation Prerequisites

The next basic conditions are necessary for the LINCAN driver usage
» some of supported types of CAN interface boards (high or low speed)

» cables and at least one device compatible with the board or the second computer with
an another CAN interface board

OCERA. IST 35102 20

Chapter 1. Linux CAN Driver (LINCAN)

» working Linux system with any recent 2.4.x or 2.2.x kernel (successfully tested
on 2.4.18, 2.4.19, 2.2.19, 2.2.20, 2.2.22 kernels) or working setup for kernel
cross-compilation

- installed native and or target specific development tools (GCC and binutils) and pre-
configured kernel sources corresponding to the running kernel or intended target for
cross-compilation

Every non-archaic Linux distribution should provide good starting point for the LIN-

CAN driver installation.

1.7.2. Quick Installation Instructions

Change current directory into the LINCAN driver source root directory
cd lincan-dir
invoke make utility. Just type ‘'make’ at the command line and driver should compile

without errors
make

If there is problem with compilation, look at first lines produced by ‘make’ command or
store make output in file. More about possible problems and more complex compilation
examples is in the next subsection.

Install built LINCAN driver object file (can. o) into Linux kernel loadable module di-
rectory (/1lib/modules/2.x.y/kernel/drivers/char). This and next commands
needs root privileges to proceed successfully.

make install
If device filesystem (devfs) is not used on the computer, device nodes have to be created
manually.

mknod -m666 /dev/can0 c 91 0
mknod -m666 /dev/canl ¢ 91 1

mknod -m666 /dev/can7 c 97 7

The parameters, IO address and interrupt line of inserted CAN interface card need to be
determined and configured. The manual driver load can be invoked from the command
line with parameters similar to example below

insmod can.o hw=pip5 irg=4 i0=0x8000

This commands loads module with selected one card support for PIP5 board type with
IO port base address 0x8000 and interrupt line 4. The full description of module pa-
rameters is in the next subsection. If module starts correctly utilities from uti1s subdi-
rectory can be used to test CAN message interchange with device or another computer.
The parameters should be written into file /etc/modules.conf for subsequent mod-
ule startup by modprobe command.
Line added to file /etc/modules.conf follows

options can hw=pip5 irg=4 io=0x8000
The module dependencies should be updated by command

depmod -a
The driver can be now stopped and started by simple modprobe command

modprobe —-r can modprobe can

OCERA. IST 35102 21

Chapter 1. Linux CAN Driver (LINCAN)

1.7.3. More Installation Instructions

The LINCAN make solutions tries to fully automate native kernel out of tree module
compilation. Make system recurses through kernel Makefile to achieve selection of
right preprocessor, compiler and linker directives. The description of make targets after
make invocation in driver top directory follows

lincan-drv/Makefile (all)
LINCAN driver top makefile

lincan-drv/src/Makefile (default or all -> make_this_module)
Needs to resolve target system kernel sources location. This can
be selected manually by uncommenting the Makefile definition
KERNEL_LOCATION=/usr/src/linux-2.2.22. The default behavior is to find the
running kernel version and look for path to sources of found kernel version in
/lib/modules/2.x.y/build directory. If no such directory exists, older version
of kernel is assumed and makefile tries the /usr/src/1inux directory.

lib/modules/2.x. y/build/Makefile SUBDIRS=.../lincan-drv/src (modules)

The kernel supplied Makefile is responsible for defining of right defines for pre-
processor, compiler and linker. If the Linux kernel is cross-compiled, Linux kernel
sources root Makefile needs be edited before Linux kernel compilation. The vari-
able CROSS_COMPILE should contain development toolchain prefix, for example
arm-linux-. The Linux kernel make process recurses back into LINCAN driver
src/Makefile.
lincan-drv/src/Makefile (modules)
This pass starts real LINCAN driver build actions.

If there is problem with automatic build process, the next commands can help to diag-
nose the problem.

make clean make >make.out 2>&1

The first lines of file make . out indicates autodetected values and can help with resolv-

ing of possible problems.
make -C src default ;
make -C utils default ;
make[1]: /scripts/pathdown.sh: Command not found
make[1l]: Entering directory ‘/usr/src/can-0.7.1-pi3.4/src’
echo >.supported_cards.h echo \#define ENABLE_CARD_pip 1 >>.supported_cards.h ; ...
Linux kernel version 2.4.19
echo Linux kernel sources /lib/modules/2.4.19/build
Linux kernel sources /lib/modules/2.4.19/build
echo Module target can.o
Module target can.o
echo Module objects proc.o pip.o pccan.o smartcan.o nsi.o ...
make[2]: Entering directory ‘/usr/src/linux-2.4.19’

The driver size can be decreased by restricting of number of supported types of boards.
This can be done by editing of definition for SUPPORTED_CARDS variable.

There is complete description of driver supported parameters.

insmod can.o hw=’your hardware’ irg=’irqg number’ io=’1io address’ <more options>

The more values can be specified for hw, i rqg and io parameters if more cards is used.
Values are separated by commas in such case. The hw argument can be one of:

e pip5, for the pip5 computer by MPL

» pip6, for the pip6 computer by MPL

* pccan—gq, for the PCcan-Q ISA card by KVASER

» pccan-f, for the PCcan-F ISA card by KVASER

» pccan-s, for the PCcan-S ISA card by KVASER

* pccan-d, for the PCcan-D ISA card by KVASER

OCERA. IST 35102 22

Chapter 1. Linux CAN Driver (LINCAN)

nsican, for the CAN104 PC/104 card by NSI

cc104, for the CAN104 PC/104 card by Contemporary Controls

aiml104, for the AIM104CAN PC/104 card by Arcom Control Systems

pc—103, for the PC-103 ISA card by IXXAT

pcm3680, for the PCM-3680 PC/104 card by Advantech

m4 37, for the M436 PC/104 card by SECO

bfadcan for sjal000 CAN embedded card made by BFAD GmbH

pikronisa for ISA memory mapped sjal000 CAN card made by PIKRON Ltd.
template, for yet unsupported hardware (you need to edit src/template.c)

The <more options> can be one or more of:

ma jor=<nr>, major specifies the major number of the driver.

minor=<nr>, you can specify which minor numbers the driver should use for your
hardware

extended=[1/0], configures the driver to use extended message format
pelican=[1/0], configures the driver to set the CAN chips into pelican mode.
baudrate=<nr>, sets the baudrate of the device(s)

clock_ freg=<nr>, the frequency of the CAN quartz

stdmask=<nr>, sets the standard mask of the device

mol5mask=<nr>, sets the mask for message object 15 (i82527 only)

OCERA. IST 35102 23

