
WP6 - Fault-Tolerance Components

Deliverable D6.4_rep - Fault tolerant
components V2

WP6 - Fault-tolerance components : Deliverable 6.4_rep - Fault-tolerant components V2
by A. Lanusse and P. Vanuxeem

Published March 2004
Copyright © 2004 by OCERA Consortium

Table of Contents
Chapter 1. Introduction ..1

1.1 Application and tasks model..2
1.1.1 ftr_tasks..2
1.1.2 ftr_tasks_group..3
1.1.3 ftr_tasks group management main principles..4
1.1.4 Simple example of redundancy management over two nodes.............................4

1.2 FT redundancy management architecture overview..5
1.2.1 Architecture of redundancy management facility on a node...............................6
1.2.2 Basic interaction between components..7
1.2.3 Application life-cycle...8
1.2.4 Faults management at task level..8
1.2.5 Faults management at node level...9

1.3 User's view ..10
1.3.1 Implementation principles ..10
1.3.2 User's API..10
1.3.3 Coding steps...12

1.4 Overview of Redundancy Management API..15
1.4.1 FT Redundancy Management external API...16

Chapter 2. ftredundancymgr component..19
2.1 Summary..19
2.2 Description...19

2.2.1 Ftredundancymgr internal structure...20
2.2.2 Redundancy management of Redundancy management...................................21

2.3 API / Compatibility..22
2.3.1 ftredundancymgr external API (Appli/ftred API)..23
2.3.2 The inter ftredundancymgr API (ftred/ftred API)..24
2.3.3 API between ftredundancymgr and ftreplicamgr (ftred/ftrepl API)..................27

2.4 Implementation issues...28
2.5 Tests and validation...31

2.5.1 Validation criteria..31
2.5.2 Test 1..32
2.5.3 Test 2..32
2.5.4 Test 3..32
2.5.5 Test 4..32
2.5.6 Results and comments..32

2.6 Examples ...32
2.6.1 How to run the examples...33
2.6.2 Description..35
2.6.3 Results and comments...35

2.7 Installation instructions..36
Chapter 3. ftreplicamgr component..39

3.1 Summary..39
3.2 Description...39

3.2.1 Ftreplicamgr internal description...40
3.3 API / Compatibility...42

3.3.1 API between ftr_controller and ftreplicamgr (ftr_controller / ftrep API)..........43
3.3.2 API between ftreplicamgr and ftredundancymgr (ftrep/ftred API)...................47
3.3.3 API between ftreplicamgrs (ftrepl/ftrepl API)...50

OCERA IST 35102 iii

3.4 Implementation issues...51
3.5 Tests and validation...54

3.5.1 Validation criteria..54
3.5.2 Test 1..54
3.5.3 Test 2..55
3.5.4 Results and comments..55

3.6 Examples ..55
3.6.1 How to run the examples...55
3.6.2 Description...55
3.6.3 Results and comments..55

3.7 Installation instructions..55

OCERA IST 35102 iv

Document Presentation

Project Coordinator

Organisation:UPVLC
Responsible person:Alfons Crespo

Address:Camino Vera, 14, 46022 Valencia, Spain
Phone:+34 963877576

Fax:+34 963877576
Email:alfons@disca.upv.es

Participant List

Role Id. Participant Name Acronym Country
CO 1 Universidad Politecnica de Valencia UPVLC E
CR 2 Scuola Superiore Santa Anna SSSA I
CR 3 Czech Technical University in Prague CTU CZ
CR 4 CEA/DRT/LIST/DTSI CEA FR
CR 5 Unicontrols UC CZ
CR 6 MNIS MNIS FR
CR 7 Visual Tools S.A. VT E

Document version

Release Date Reason of change
1_0 26/03/04 First release

OCERA IST 35102 v

Chapter 1. Introduction
The main objective of the fault-tolerant work-package in OCERA is to provide two types of
facilities: degraded mode management in mono-node applications and redundancy
management in distributed applications. The first series of facilities have been described in
previous deliverables (see D6.1 and D6.2_rep).

The fault-tolerance components included in this deliverable consist of two complementary
components (ftredundancymgr and ftreplicamgr) that together provide a framework for
implementing redundancy management support for user's application. They will respectively
control redundancy at the application level and at the task level on each node.

This first implementation is intended to provide a basic framework whose goal is to offer a
global set of facilities that permit transparent implementation of redundancy for developers
of real-time applications. It offers a passive replication model, the task model is a simplified
one (periodic tasks), fault-detection is based on heartbeats and timeouts, consistency of
replicas is ensured by periodic checkpointing.

The current implementation is located at Linux user-space level using ORTE component for
communication between nodes. However implementation choices have been made in such a
way as to facilitate the port to OCERA Hard Real-Time level when ORTE become
available at this level. Indeed these facilities can be enriched in the future.

Before entering in the details of the components architecture we describe briefly, the
application and tasks model used, then we introduce the main principles of functionning of
the overall architecture.

OCERA IST 35102 1

Figure 1.1 FT Redundancy management components location
within OCERA architecture

RT - Linux OCERA

POSIX RT API

Linux OCERA

POSIX RT API

Hardware

hrt-tasks

Soft rt-tasks

Application level OCERA components

ftredundancymgr

ORTE

ftreplicamgr

UDP API

ORTE API

1.1 Application and tasks model

An application consists of a set of ftr_tasks (fault_tolerant redundant tasks).

In order to support data consistency and to facilitate tasks recovering on node crash, a task
model must verify synchronisation properties. In the current implementation, we have
introduced the following task model.

1.1.1 ftr_tasks
A ftr_task is a real-time periodic task (same parameters as pthread scheduling parameters).

All ftr_tasks are periodic, there is no other temporal synchronization than the periodicity of
the task. The basic cycle of a ftr_task instance is the following.

A context object is defined for each ftr_task, this context contains static variables which are
changed during a period and whose change is significant for the task behavior of next
periods. This context is saved at each end of execution of an iteration. It is then broadcasted
to the task group of replicas, so that one of them can become the new master task and start
with a valid context in case of node crash.

The application developer must define the set of variables which must be part of the context
at design time. This context object is automatically updated and broadcasted at each end of
cycle.

Communication with other tasks is limited to reading and writing data in predefined shared
objects. Reading is done at beginning of the period, writing is done at the end of the period.

These objects have only one writer, visibility of data is enabled to other tasks after the
completion of the code of the task, at the beginning of the new period. (Which means that
tasks are working on data obtained during the previous period of the writer's task).

OCERA IST 35102 2

Figure 1.2 ftr_task execution
model

Run to completion

Commit new context

Read /Init context

Update outputs

Read inputs

Wait for next period

When defining ftr_tasks, it is required to specify :

• the structure of its ftr_context object;

• the ftr_shared_data objects that will be used as inputs;

• the ftr_shared_date objects that will be written by the ftr_task (only one writer per ftr-
shared_data object).

1.1.2 ftr_tasks_group

The redundancy management model adopted is a passive replicas management model.

Redundancy parameters have been introduced in the ftr_task data structure. These
parameters include :

• the redundancy level required for the ftr_task (minimum and maximum number of
replicas);

• the location of each replica;

From these information, and for each ftr_task, an ftr_tasks_group is defined which gathers
data on :

• ftr_task_master location and status

• for each ftr_task_replica of the ftr_task_master its location and status

• current valid context of ftr_master_task (from last period)

• temporal information of ftr_task_master (date of cycle start, deadline, date of cycle end).

OCERA IST 35102 3

Figure 1.3 ftr_task and ftr_shared_data relationships

Node1

p

p-1
ft r _s h a r e d _d a t a

p

p-1
ft r _sh a r e d _d a t a

T1

ft r _t a sk_m a s t e r _in s t a n c e
ft r _t a sk_c on t e xt

In p u t s

O u t p u t s

1.1.3 ftr_tasks group management main principles
Tasks group management is insured by the ftreplicamgr which periodically broadcasts the
new context emitted by the ftr_master_tasks if execution cycle completed successfully.

Moreover, if the ftr_master_task is writer of a ftr_shared_data, the ftr_shared_data new
value is also broadcasted to other nodes at each end of cycle.

Temporal behavior of ftr_master_task execution is controlled and notification of error is
done to ftredundancymgr in case of deadline miss. If necessary a replica is elected as new
master and the previous master is deactivated. The selection of the new master is
deterministic, it is simply the ftr_task_replica located on the next available node (in an
ordered list of nodes).

1.1.4 Simple example of redundancy management over two nodes
In the following simplified example, the application is composed of two ftr_tasks
implemented on two nodes. The two master replicas for tasks T1 and T2 are located on
Node1 and two slave replicas are located on Node 2. T1 and T2 periodically (at each end of
cycle of each task) transmit their contexts (CT1 and CT2) to ftreplicamgr which broadcasts
them to members of ftr_tasks_groups of T1 and T2 (in this simple case only to T1:s1 and to
T2:s2). Moreover T2 is producer of ftr_shared_data SD1, so SD1 is also propagated to
Node2.

The ftredundancymgr controls global network, detects possible node crash and decide of
dynamic reconfiguration when such an event happens. Information on application status is
thus also replicated within each node. Such transmission of information is totally transparent
to the user.

OCERA IST 35102 4

Figure 1.4 Simple example of redundancy management over two nodes

Node2

FTR Application : node2

T1:s1 T2:s2

Redundancy Management Faclity

CT1
CT2

SD1

ftredundancymgr ftreplicamgr

Node1

FTR Application : node1

T1:m T2:m

Redundancy Management Faclity

CT1
CT2

SD1

ftredundancymgr ftreplicamgr

Replica management

Global Application & Network control

1.2 FT redundancy management architecture overview

As viewed in the previous section, the implementation of redundancy management requires
two OCERA RTLinux components located at the application level on each machine of the
network.

• a Redundancy manager (ftredundancymgr) in charge of the global application
monitoring and redundancy policy. This component is in charge of application
initialization and control of overall distributed architecture. It also performs node crash
detection through lifelines control using heartbeats. On detection of such failure, dynamic
reconfiguration of application is activated. New master tasks are elected in order to
replace tasks which were located on the faulty node. Low level control of execution of
tasks is delegated to a replica manager which is in charge on insuring consistency of
groups of redundant tasks (see below).

• a Replica manager (ftreplicamgr) in charge of the low level control of the tasks. Tasks
groups are defined with a master and several slaves depending on the redundancy level
required for the task. Tasks are all periodic tasks, only the master task of a group is
active, at each end of cycle, checkpointing is performed. The new context of the task is
then broadcasted to all replicas of the task. If a timeout is detected on a periodic task, a
notification is issued to ftredundancymgr which will then test if corresponding node is
still alive and decide about action to be undertaken. (Change current master task to an
other one or use default action, or detect node crash and reconfigure all application).

We give a rapid overview of this overall framework functioning principles in the following
two sections.

OCERA IST 35102 5

Figure 1.5 Global FT Redundancy Management Architecture overview

Node2

Node1

Redundancy Management Faclity

ftredundancymgr ftreplicamgr

Replica management

Global Application & Network control

hearbeat

node_

crash_

detector

appli_controller

notification

_manager
checkpoint

_manager

ftr_tasks_groups_manager

watchdog

FTR Application : node1
main ftr_control

ftr_task

 T1:mr1m

ftr_task

 T1:mr1m

ftr_task

 T1:m

CT1CT1CT1

1.2.1 Architecture of redundancy management facility on a node

On each node, the two components (ftreplicamgr and ftredundancymgr) are implemented
as two separate threads that cooperate within a Linux process in user's space.

The user application runs in a separate Linux process. In the current implementation, all
application tasks are implemented as threads within one single application Linux process.
(This choice has been made in order to be closer to the future implementation at Hard
RTLinux level where all threads share the same space).

Within this process, an application control thread is created at application init, it is in charge
of application tasks creation and communication with the ftredundancy management facility.
This thread is transparent to the user which uses a dedicated API to create and run
application tasks.

An application task is encapsulated within a ftr_task which insures periodic control of the
task and checkpointing (communication with the ftreplicamgr).

Communication between processes and between nodes are handled by ORTE
communication component.

There is one instance of each component on each node of the network. The redundancy
manager on each machine has a complete knowledge of application current configuration
and constraints, so that it can take decisions in an autonomous way if necessary.

The replica managers maintain a table of all ftr_tasks_groups and maintain the current status
of each member of a group (master, passive_replica, unavailable_replica) and its location.
Each active replica, periodically sends its new context which is then broadcasted to all other
members of the group. The protocol must insure reliable atomic transfer to all members of
the group of replicas. The replica manager, regularly verifies that context checkpoint has
been performed on time.

OCERA IST 35102 6

Figure 1.6 Overview of RedundancyManagement Architecture on a node.

N o d e 0

Re d u n d a n c y M a n a g e m e n t Fa c i l i t y

ftredundancymgr

ftreplicamgr

U s e r Ap p l i c a t i o n

appliControlThread

ORTE c om m u n ic a t ion c om p on e n t

ftr_task3

ftr_task2
ftr_task1

Lin u x p ro c e s s

Lin u x t h r e a d

1.2.2 Basic interaction between components
The main interactions between components are illustrated in following figure where the two
instances of components located on a node appear as two separate threads within one Linux
process, services offered are shown within oval forms. This framework is present on each
node of the distributed architecture required for the application.

Figure 1.7 . Internal and external interactions of ft_redundancy components

In this figure three types of protocols are shown, the first one concerns the main functioning
loop, the second concerns node crash detection and related reconfiguration process, the third
one concerns timeout detection at task level, the task may be faulty but not the node.

OCERA IST 35102 7

Re d u n d a n c y M a n a g e m e n t Fa c i l i t y

ftredundancymgr

ftreplicamgr

Appli_set_up

Appli_reconfiguration

Fault_notification

task_level_fault_detection

task_Checkpointing

task_status_control

node_level_fault_detection

1

2

3

4

5

6

a

b

c

lo

li

config

f1

f2

fn

Main functioning loop:

1 : application init

2 : tasks groups creation

3 : task creation, start or end

4 : task cycle started

5 : task cycle ended + context or task end

6 : checkpoint towards passive replicas

Task level fault detection :

a : task started + deadline

b : task ended

c : timeout reached task not responding

f2 : task j on node n not responding

Node level lifeliness control :

li : lifeliness in (node_i is alive) received from each node

lo : current node is alive sent

f1 : node i not responding

1.2.3 Application life-cycle

Previously to application start, the redundancy management must be made available. A
script shell permits the installation of the two components onto a set a specified nodes. Once
ftredundancymgr and ftreplicamgr are installed and ready, one can start an application.

At init, application is started in master mode on one node which is called node_0,
information on application configuration is provided to the ftredundancymgr:

• number of tasks and tasks descriptions (including redundancy level parameter for each
task),

• number of nodes and nodes_Id

• initial mapping of tasks onto nodes

• ordered list of nodes for dynamic reconfiguration on node crash (determines node
replacement choice)

According to this information, the ftredundancymgr instantiates its internal application
description table and remotely starts application on other nodes in slave mode.

It then builds tasks groups (master task + its replicas) and sends information for each group
to the ftreplicamgr whose role is two control the functioning of each task and to maintain
the consistency of all replicas for each tasks group.

The ftreplicamgr instantiates its own tasks groups table and task control status table, then
enables creation of tasks and tasks replicas on each node (actually task creation itself is
achieved within the User Application process by the internal application control thread, the
task may be created as active or passive).

When all tasks are created on each relevant node, start of tasks is enabled. Each task thread
becomes ready and is then started according to its mealtime parameters and to scheduling
policy. At each cycle, start of cycle is notified to ftreplicamgr; at each end of cycle, end is
notified and the checkpointing of the new task context is achieved. A watchdog verifies
timeliness of task completion and a fault notification is issued in case of deadline miss on a
task.

On application termination all tasks are terminated, then application instances are finished
on each node and application is unregistered. The redundancy management facilities stay
available for a new application or may be ended by a specific command.

1.2.4 Faults management at task level

The ftreplicamgr located on each node controls the execution of each master replica,
namely: start-time, end-time, and timeliness of transmission of context.

If a deadline miss occurs on a ftr_task (the master did not transmit its context on time), a
new master is elected amongst the corresponding ftr_tasks_group and the faulty one is
terminated.

OCERA IST 35102 8

The ftreplicamgr notifies the ftredundancymgr of the fault, this latter then updates its
new tasks configuration and broadcasts it to each node.

The ftreplicamgr located on the node where the new master task will from now on be
located, switches the ftr_task_replica on and makes it run in master mode instead of slave
mode. It will start at the next period (P+1) of the ftr_task with the last valid context (context
P-1) . Several strategies can be envisaged to provide smoother behavior to the application,
but for the moment only this rather drastic solution is implemented (one period is lost).

1.2.5 Faults management at node level

The ftredundancymgr of each node periodically sends a lifelines message to all other
nodes, a node_failure_detection mechanism checks arrival of these messages.

A silent node is considered as faulty and retrieved from the set of available nodes. All active
tasks on that node are switched off and a new replacement master task is elected for each
one. The process of election is deterministic (using the ordered list of valid nodes). If it is
not possible to find a new master task then the current default action is to end the overall
application.

As said previously, this first implementation provides a global framework build on top of
OCERA Soft RT level, all the application tasks are periodic tasks.

Though the implementation of these components was initially intended to be developed at
both Hard and Soft mealtime levels, the current version has been implemented using results
of OCERA available at end of phase1 before full integration be ready. The implementation
at hard RT level should however be easily ported to Hard real-time level when ORTE
components at this level are available.

OCERA IST 35102 9

1.3 User's view

1.3.1 Implementation principles
Implementation principles are driven by the will to make redundancy management as
transparent as possible to the application developer. So in order to develop an application,
the user can almost forget about underlying ft redundancy management architecture.

To support the approach, two features are introduced and used within the user's process :

• creation of a control thread dedicated to redundancy control (ftr_control_thread)

• encapsulation of application tasks into ftr_tasks_threads

The ftr_control_thread is in charge of initialization and control of application. Created
within the user application process it communicates with ftredundancymgr and
ftreplicamgr.

The ftr_tasks_threads are generic encapsulation of redundant tasks. A ftr_task_thread is
created for each user's application redundant task. It ensures periodic execution of user's task
routine, management of context entity and of shared data entities and communication with
ftreplicamgr for checkpointing.

Communication with ftreplicamgr and ftredundancymgr are achieved using ORTE
publisher/subscriber mechanisms both within a Node and between nodes, but this is
transparent to the user since calls are made either from ftr_control_thread or from
ftr_tasks_threads generic part using specific internal APIs that are described in the
corresponding component sections below.

1.3.2 User's API
The approach chosen results in a very limited user's API necessary mainly for initialization
and termination of user application. Most of user' s application code consists in routines that
will be run within ftr_tasks_threads.

int ftr_application_register(char *, FTR_APPLI_DESC * ,
 ManagedApp *);

int ftr_appli_desc_init(FTR_APPLI_DESC *);

int ftr_appli_task_create(FTR_APPLI_TASK_DESC *);

int ftr_appli_task_end(int);

int ftr_application_terminate(char*);

FT redundancy management User API

The important issue is to specify the context data and shared resources for each task at
design. Concurrency control over such shared data is then automatically insured by the
execution model. Then threads routine can be written simply in a usual way.

OCERA IST 35102 10

In the following figure we illustrate on a very simple example how an application is started.

Once the design is done, the resulting architecture on a node is composed of the user's
process and of the Redundancy Management Facility process (in the following view we do
not show ORTE process).

Within the user's process the yellow (or white) parts concern code written by users and blue
(or gray) part concern generic ftr code.

First the application creates the ftr_control_thread (1), then it calls the
ftr_application_register primitive to register the application (2), the
ftr_control_thread then communicates with the ftredundancymgr to setup data (3) for the
new application, and waits for acknowledgment (4) from it before returning OK (5) to the
user main thread.

Then the ftr_appli_desc_init primitive is called to setup application data structures
and ftr_tasks_threads (6). At this step ftr_tasks_threads are created but the corresponding
users routines are not started. When all the infrastructure is ready, the ftreplicamgr notifies
the ftr_control_thread (7) which returns OK (8) to user's main thread.

Finally the user can call the ftr_appli_task_create primitive to start a ftr_task.(9).
The ftr_controller_thread then makes the ftr_task_thread start periodic call to the
corresponding user's ftr_task_routine (10).

Two other primitives are available to end an ftr_appli_task (ftr_appli_task_end) and
to terminate the overall application(ftr_application_terminate).

OCERA IST 35102 11

Figure 1.8 Interactions with redundancy Management facility components form User's Application

Node1

FTR Application : node1

ftr_task

 T1:m

Redundancy Management Faclity

CT1

ftredundancymgr ftreplicamgr

main ftr_control

r1m

Replica management

1

2

3

5

4

6
8

7

9
10

Global Application & Network control

The user has to define specific data structures, one to describe the overall application
structure and one to describe each ftr_task.

It is intended that the Ftbuilder tool (already available for the specification of degraded
mode management) will assist the designer to determine these features and automatically
generate the corresponding data structures. For the moment this facility is not implemented
yet, and data is provided in a file read by the ftr_appli_desc_init primitive.

1.3.3 Coding steps
An application can be written rather simply following the different generic steps :

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <orte.h>
#include <netdb.h>
#include <pthread.h>
#include <simple_appli.h>
#include <ftredundancymgr.h>
#include <appli_controller.h>

ManagedApp *appli;

pthread_t ftr_control_thread;

int main(void)

{

 int res = 0;

 void *ret;

 FTR_APPLI_DESC application_desc;

 FTR_APPLI_TASK_DESC application_task_desc_1;

 FTR_APPLI_TASK_DESC application_task_desc_2;

1. Declarations for ftr_application

 /* Creation of ftr_control_thread */

 pthread_create(&ftr_control_thread, NULL,
(*ftr_main_control_routine),
 NULL);

 if (res != 0) {
 perror("Redundancy Management thread creation failure ...
 exiting");
 exit(-1);
 };

2. Creation of ftr_control_thread of ftr_application

OCERA IST 35102 12

The ftr_control_thread of the application is created in the beginning of the main thread to
install the ftr architecture within the application process. In the future, it will be replaced by
a macro. The ftr_main_control_routine, is a generic control loop that monitors events from
and to the ftr_process. It also accepts requests form the user main thread.

 /* Init appli_desc structure */

 res = ftr_appli_desc_init(&application_desc);

 if (res == -1) {
perror("Redundancy Management : application desc init failed ...

 exiting");
 exit(-1);
 };

3. Initialazition of application data structures

During this step, data structures describing application and tasks are initialized.

 /* Register application */

 res = ftr_application_register(APPLI_NAME,
&application_desc,appli);

 if (res == -1) {
 perror("Redundancy Management : application registration
failed...
 exiting");
 exit(-1);
 };

4. Registration of application

Application registration is done towards ftr process which in turn propagate information
over network (thanks to ORTE) to other ftr processes. (Application is also registered as
ORTE Application). (Internal tables are initialized, groups of replicas are created and
instances created on each node).

 /* Tasks creation */

 application_task_desc_1 = application_desc.appli_tasks_tab[1];

 application_task_desc_1.appli_task_routine = ft1;

 res = ftr_appli_task_create(&application_task_desc_1);

if (res == -1) {
 perror("Redundancy Management : task creation (1) failed...
 exiting");
 exit(-1);
 };

...

5. ftr_tasks creation for ftr_application

During this step each application task is created using the ftr_task_desc of each one. This
steps defines mainly the routine to be run within the generic ftr_task_thread and the related
real-time parameters (period, estimated_duration, deadline). At the end of each period, the
current context is sent to all its replicas on other nodes.

Once this is done for each task, the application runs in a nominal way.

OCERA IST 35102 13

To end a task the following call is necessary.

 /* Requiring End of Task 1 */

 res = ftr_appli_task_end(1);

...

6. ftr_tasks ending for ftr_application

This ends the corresponding ftr_task (and all its replicas). All ftr_tasks have to be ended
before application itself can be ended.

 /* Requiring Application Termination */

 ftr_application_terminate(APPLI_NAME);

 /* Waiting for end of control_thread */

 pthread_join(ftr_control_thread,&ret);

 if (ret != PTHREAD_CANCELED) {
 i = (int) ret;
 printf("Main : end of ftr_control_thread ret = %d\n", i);
 };

 printf("\nAppli ending : ");
 return 0;

}

7. Termination of ftr_application

Once all the ftr_tasks are ended, resources are freed and the ftr_control_thread is ended, then
application terminates.

Obviously, the user must in addition provide the code of the routines that will be run within
each ftr_tasks_thread. A pointer to this routine is a member of the ftr_task_desc structure.

In our simple example :

int ft1(int i)

{

 printf("Function ft1 running with arg %d\n",i);

 sleep(3);

 return 0;

}

The status of the current implementation is still in a testing phase. The example
implemented tests application setup, execution and termination.

OCERA IST 35102 14

1.4 Overview of Redundancy Management API

The Fault-Tolerance components described in this document have to be used jointly since
they interfere strongly. It is the reason why though each one has its own API described in a
distinct section, it may be usefully to get a general overview of them.

The external user API is actually restricted to very few functions :

• ftr_application_register(),

• ftr_appli_desc_init(),

• ftr_appli_task_create(),

• ftr_appli_task_end(),

• ftr_application_terminate()

They are called within user's main application thread and handled by the ftr_control_thread
(named hereafter ftr_controller) running within the application process. Then the
ftr_controller uses internal API to communicate with ftredundancymgr and with
ftreplicamgr.

The ftredundancymgr has a small external API that is used to start or end the redundancy
management facility.

In addition, each component has also internal API(s) that permit interactions between them.

The user's API is described hereunder while next chapters describe in details the two FT
components.

OCERA IST 35102 15

Figure 1.9 Global view of ft redundancy management API(s)

Redundancy ManagementApplication

ftredundancymgr

ftreplicamgr

ftr_controller

ftr_notify_appli_task_created()
ftr_notify_appli_task_cycle_started()
ftr_notify_appli_task_cycle_finished()
ftr_notify_appli_task_ended()

ftr_task_context_commit()
ftr_task_context_update()
ftr_shared_data_commit()
ftr_shared_data_update()

ftr_application_register ()
ftr_appli_desc_init()
ftr_appli_task_create()
ftr_appli_task_end()
ftr_application_terminate()

ftr_notify_task_failed()

ftr_redundancy_management_start()
ftr_redundancy_management_end()

ftr_application_config_init()
ftr_application_config_modify()

ftr_notify_node_failed()
ftr_application_config_checkpoint()
ftr_ftredundancymgr_heartbeat()

User Application Main

ftr_task_group_add_member()
ftr_task_group_remove_member()
ftr_task_group_modify_member_attributes()

ftr_task_checkpoint()
ftr_ftreplicamgr_heartbeat()

ftr_task_group_init()
ftr_task_group_destroy()

1.4.1 FT Redundancy Management external API

ftr_appli_desc_init

Parameters :

in

application_desc

Description :

Used to initialize locally (within user's process) data strutures
related to a new application (nodes configuration,
ftr_tasks_groups, ftr_tasks_descs).

Prototype :

extern int ftr_appli_desc_init(FTR_APPLI_DESC *);

ftr_application_register

Parameters :

in

application_name

application_desc

ORTEhandle

out

application_id

Description :

Used to register the new application and make it handled by
ftredundancy management. Among arguments, it is necessary to
provide the ORTE handle to the managed application that is used
for communications.

Prototype :

extern FTR_APPLI_ID ftr_application_register(char *,

 FTR_APPLI_DESC * ,

 ManagedApp *);

OCERA IST 35102 16

ftr_appli_task_create

Parameters :

in

ftr_appli_desc

 out

ftr_task_id

Description :

Creates the ftr_task entity (generic thread implmenting periodic
ftr behavior) with real-time and redundancy management parameters
provided by the user within the ftr_appli_desc structure.

 The internal tasks status database is updated.

Prototype :

extern FTR_TASK_ID ftr_appli_task_create(FTR_APPLI_TASK_DESC *);

ftr_appli_task_end

Parameters :

in

ftr_task_id

Description :

Used by application to end an ftr_task and its associated
replicas.

Prototype :

extern int ft_task_end(FTR_TASK_ID ftr_task_id);

OCERA IST 35102 17

ftr_application_terminate

Parameters :

in

application_id

Description :

Used to terminate application. Norammly all ftr_tasks have been
terminated before calling it.

Prototype :

extern FTR_APPLI_ID ftr_application_terminate();

OCERA IST 35102 18

Chapter 2. ftredundancymgr component

2.1 Summary

• Name : ftredundancymgr

• Description : ftredundancymgr along with ftreplicamgr are two complementary
components that provide transparent redundancy management for real-time applications.
Redundancy policy implemented is based on a passive replication model. The
ftredundancymgr is in charge of global application and network initialization and
control (including node crash detection). The ftreplicamgr is in charge of tasks level
control: tasks groups and tasks replicas management, checkpointing.

• Author (name and email) :
A. Lanusse (agnes.lanusse@cea.fr)

 P. Vanuxeem (patrick.vanuxeem@cea.fr)

• Reviewer :

• Layer : application Linux Level

• Version : V0.1

• Status : test

• Dependencies : ocera V1.0 ORTE component and requires ftreplicamgr component

• Release date : M24

2.2 Description

The ftredundancymgr insures redundancy management at global application level.
The role of the ftredundancymgr component covers the five following points:

• it sets up the redundancy management infrastructure and installs and configure the
ftreplicamgr,

• it sets up the initial configuration of application

• it monitors the overall architecture (node crash detection)

• it achieves dynamic reconfiguration of application in case of node crash.

• it terminates and performs clean-up at application end.

ftredundancymgr and ftreplicamgr insure together the redundancy management facility on
a node. They have to be started before the application.

They are replicated on all the nodes defined in the configuration at start of the facility. The
starting node is considered as master node, the others are semi-active replicas (see below).

OCERA IST 35102 19

Communication between them and with their corresponding component on other nodes
relies on ORTE Publisher/Subscriber communication model. This permits easy broadcast of
application data or application status over the different nodes. This communication is
transparent to the application developer.

2.2.1 Ftredundancymgr internal structure

We describe here the internal structure of the ftredundancymgr. For feasibility reasons,
entities appear without their prefix (ftr_).

The ftredundancy manager component consists of one main controlling thread that insures
applications control and dedicated threads that are in charge of node control. These latter
threads insure respectively, heartbeat service, node_crash detection and notifications
management.

A nodes database nodes_tab contains information on all nodes handled by the redundancy
management facility. (That is static nodes description data and nodes control status data).

The nodes_tab is created by the ftredundancymgr prior to application start. The database
is initialized, heartbeat is started along with node_crash detection and notification
management.

The appli_controller thread is a FSM waiting for application events to occur, and reacting
accordingly.

On application registration, it creates a new entry in the applis_tab and instantiates the

OCERA IST 35102 20

Figure 2.1 ftredundancymgr : internal view

Node_i

Redundancy Management Faclity

ftredundancymgr

Global Application & Network control

hearbeat

node_

crash_

detector

appli_controller

notification

_manager

nodes_tab

applis_tab

tasks_tab

tasks_groups_tab

appli/ft_redundancymgr Api

ft_red un
da n

c ym
g r/ft_r ep

licam
gr A

p
i

ft_redundancymgr /ft_redundancymgr Api

corresponding data structure. An application description contains both system configuration
data (numer of nodes and their names) and data related to its tasks (number and
tasks_descriptions).

From these information entries in other databases are created and completed with the
description of the applications tasks and application tasks_groups (location of master and
slave replicas for a task).

The tasks_groups_tab stores information on replicas groups. For each group, information
on task redundancy parameters, task status and on location of replicas is maintained.

Once this is done, information is propagated to ftreplicamgr in order to instanciate tables
related to groups management.

When ftreplicamgr is ready, registration is completed and an acknowledgement is provided
to the application by the ftredundancymgr.

The application can then start creating tasks. This protocol is handled by the ftreplicamgr
and task_status and group_status is propagated to ftreplicamgr (see chapter3).

If a node_crash is detected, the notification_manager analyses the event in relation with
information coming from other nodes, if node crash is confirmed, the ftredundancygr
defines a new configuration of tasks groups (election of new tasks master replicas among
replicas groups for each master located on the faulty node) updates its data bases and
propagate information to ftreplicamgr.

2.2.2 Redundancy management of Redundancy management

As said above, the two ftredundancy management components are replicated on all nodes.
It is thus necessary to precise how this replication is handled.

The code of each of these component is unique and executed on each node. The only
difference between nodes is that one is considered as master for redundancy management
facility. A Flag determines the status for each node.

The starting node is the master. It is this node that is responsible for data bases initialization,
when a new application is created and for databases updates as long as the node doesn't
crash. These databases are maintained consistent by broadcast of changes. Except for this
role, the rest of the functioning of the components is the same.

In the same way, the tasks checkpointing process insures the consistency between internal
tasks_groups databases of different nodes.

When a node crashes, reconfiguration decisions are made by the master ftredundancymgr
and propagated to others.

If the master node crashes, the next valid node in the nodes_table becomes the master node
and performs dynamic reconfiguration of tasks located on this node.

OCERA IST 35102 21

2.3 API / Compatibility

This component uses posix Linux API for threads manipulation and ORTE OCERA
component API for communication between nodes.

We have already introduced the User's API in chapter1, we describe here API that have been
defined in order to make the various ftredundancy management components cooperate.

The API related to ftredundancymgr can be divided into three subsets :

• an API for communication between application and ftrundancymgr(appli/ftred API).

• an API for communication between ftredundancymgrs (ftred/ftred API) located on
different nodes,

• an API for communication with the ftreplicamgr(ftred/ftrep API),

Appli/ftred

ftr_redundancy_management_start()

ftr_redundancy_management_end()

ftred/ftred

ftr_application_config_init()

ftr_application_config_modify()

ftr_application_config_checkpoint()

ftr_ftredundancymgr_heartbeat()

ftr_notify_node_failed()

ftred/ftrep

ftr_task_group_init()

ftr_task_group_destroy()

OCERA IST 35102 22

2.3.1 ftredundancymgr external API (Appli/ftred API)

This API is limited to start and end of the ftredundancy management facility.

ftr_redundancy_management_start()

parameters :

in :

 master_node_IP

 nodes_list

Description:

Used to start the ftredundancymgr and ftreplicamgr on each
specified node. The ftredundancy components are started on the
master node, then on the others. Heartbeat and network failure
detection starts. The components are ready to accept application
registration.

Prototype :

extern int ftr_redundancy_management_start(FTR_NODE_ID,

 FTR_NODES_LIST);

ftr_redundancy_management_end()

parameters :

in :

Description:

Used to end the ftredundancymgr and ftreplicamgr on each specified
node. The ftredundancy components are ended node by node, then the
master node terminates. The components are ready to accept
application registration.

Normally this call should be done when there is no more
application running.

Prototype :

extern int ftr_redundancy_management_start(FTR_NODE_ID);

OCERA IST 35102 23

2.3.2 The inter ftredundancymgr API (ftred/ftred API)

This API is used to permit coordination between the various ftredundancymgrs present in
the configuration, the different functions are not seen by the application developers.

ftr_application_config_init()

parameters :

in :

 appli_id

 appli_config

Description:

Used by the ftredundancymgr to initialize locally the
configuration of an application.

Once this is done, it transmits the new tasks_groups to
ftreplicamgr and commit the new status of its tables to other
nodes using ftr_application_config_checkpoint().

Prototype :

extern int ftr_application_config_init(FTR_APPLI_ID,

 FTR_APPLI_CONFIG);

ftr_application_config_modify()

parameters :

in :

 appli_id

 appli_old_config

 appli_new_config

Description:

Used by the ftredundancymgr to update locally the current
configuration for an application.

Once this is done, it transmits the new task_groups to
ftreplicamgr and commit the new status of its tables to other
nodes using ftr_application_config_checkpoint().

OCERA IST 35102 24

Prototype :

extern int ftr_application_config_init(FTR_APPLI_ID,

 FTR_APPLI_CONFIG,

 FTR_APPLI_CONFIG);

ftr_application_config_checkpoint

parameters :

in :

 application_config

 iteration_number

 date

Description :

Used by the master ftredundancymngr to broadcast a new
configuration to other ftredundancymgrs. This is done at each
configuration change, whether it is due to task or node failure.

Prototype :

extern int ftr_application_config_checkpoint(FTR_APPLI_ID,

 FTR_APPLI_CONFIG,

 int,

 NtpTime);

ftr_ftredundancymgr_heartbeat

parameters :

in : ftredundancymgr_Id

 iteration_number

 date

Description :

Used by the ftredundancymngr to control liveliness of the system.
A periodic signal is sent on the network and received by all the
other ftredundancymgrs.

Prototype :

extern int ftr_ftredundancymgr_heartbeat(FTR_RED_MGR_ID,

 int,

 NtpTime);

OCERA IST 35102 25

ftr_notify_node_failed

parameters :

in :

 ftreplicamngr_Id

 nodeId

 issue_number

 date

Description :

Used by the ftredundancymngr to notify a node crash to other
nodes. This detection is followed by a reconfiguration phase and a
call to ftr_application_config_modify for each application.

Prototype :

extern int ftr_ftredundancymgr_heartbeat(FTR_RED_MGR_ID,

 FTR_NODE_ID,

 int,

 NtpTime);

OCERA IST 35102 26

2.3.3 API between ftredundancymgr and ftreplicamgr (ftred/ftrepl
API)
The ftredundancymgr and ftreplicamgr share the control of ftr_tasks_groups. The
ftredundancymgr initializes the data structure for the tasks_groups_tab and the
ftreplicamgr populate and updates it as replicas are started, deleted or change their status
from slave to master. Each change is propagated to other nodes by the ftredundancymgr.

ftr_task_group_init

parameters :

in :

ftr_task_desc

 out :

ftr_task_group_id

Description :

Used by the ftredundancymgr to instantiate its internal
tasks_groups_tab. This call sets the group configuration for a
ftr_task using ftredundancy parameters of the ftr_task
(redundancy level, redundancy policy, location of replicas). Each
time a ftr_task replica is created, or deleted, the ftr_task_group
is updated by the ft_replicamgr using the two calls
ftr_task_group_add_member, ftr_task_group_remove_member.

Prototype :

extern FTR_TASK_GROUP_ID ftr_task_group_init(FTR_TASK_DESC *);

ftr_task_group_destroy

parameters :

in :

ftr_task_group_id

Description :

Used by the ftredundancymgr to destroy an entry in its
tasks_groups_tab when a ftr_task and all its replicas are ended.

Prototype :

extern int ftr_task_group_destroy(FTR_TASK_GROUP_ID);

OCERA IST 35102 27

2.4 Implementation issues

• Modifications to the existing RTLinux or Linux code

This component is a new one, there is no modification to existing Linux component.

• Data structures created.

Main data structures created concern :

• ftr_node,

• ftr_appli_desc,

• ftr_task_desc,

• ftr_task_group.

• ftr_shared_data,

• ftr_task_context,

Data tables are :

• ftr_nodes_tab,

• ftr_applis_tab

• ftr_tasks_tab

• ftr_tasks_group_tab,

Control events defined are :

• ftr_appli_control_event

• ftr_lifeliness_control_event

OCERA IST 35102 28

Structures :

typedef struct

{

 char appli_name[NAME_MAX_LENGTH];

 FTR_NODE_ID node_id;

 FTR_APPLI_ID node_applis_list;int appli_tasks_nb;

 FTR_APPLI_TASK_DESC appli_tasks_tab[APPLI_MAX_TASKS_NB];

} FTR_NODE_DESC ;

typedef struct

{

 char appli_name[NAME_MAX_LENGTH];

 FTR_APPLI_ID appli_id;

 int appli_tasks_nb;

 FTR_APPLI_TASK_DESC appli_tasks_tab[APPLI_MAX_TASKS_NB];

} FTR_APPLI_DESC ;

typedef struct

{

 char appli_name[NAME_MAX_LENGTH];

 char appli_task_name[NAME_MAX_LENGTH];

 FTR_APPLI_TASK_ID appli_task_id;

 char appli_task_behavior_name[NAME_MAX_LENGTH];

 int (*appli_task_routine)(int);

 FTR_SCHEDULING_PARAMETERS *scheduling_parameters;

 FTR_REDUNDANCY_PARAMETERS *redundancy_parameters;

} FTR_APPLI_TASK_DESC ;

OCERA IST 35102 29

Tables :

The FT R Nodes table :

FTR_NODE_DESC ftr_nodes_tab[FTR_NODES_MAX];

The FT R Applis table :

FTR_APPLI_DESC ftr_applis_tab[FTR_APPLIS_MAX];

The FT R Tasks table :

FTR_APPLI_TASC_DESC ftr_tasks_tab[FTR_TASKS_MAX];

The FT R tasks_groups_ table :

FTR_TASK_GROUP_DESC ftr_tasks_groups_tab[FTR_TASKS_MAX];

New types defined to describe status of various entities:

typedef enum FTR_NODE_STATUS {

 FTR_NODE_STATUS_UNKNOWN,

 FTR_NODE_OK,

 FTR_NODE_NOK

} FTR_NODE_STATUS;

typedef enum FTR_TASK_STATUS {

 FTR_TASK_STATUS_NOT_DEFINED,

 FTR_TASK_CREATED,

 FTR_TASK_RUNNING,

 FTR_TASK_TERMINATED

} FTR_TASK_STATUS;

typedef enum FTR_TASK_REPLICA_STATUS {

 FTR_TASK_REPLICA_STATUS_NOT_DEFINED,

 FTR_MASTER,

 FTR_SLAVE,

 FTR_TERMINATED

} FTR_TASK_REPLICA_STATUS;

OCERA IST 35102 30

New types defined to describe control events:

typedef enum

 {

 FTR_TASK_NOP,

 FTR_TASK_CREATION_REQUIRED,

 FTR_TASK_TERMINATION_REQUIRED,

 FTR_APPLICATION_TERMINATION_REQUIRED

 } FTR_APPLI_CONTROL_EVENT;

typedef enum

 {

 FTR_TASK_NOP,

 FTR_TASK_REPLICA_CREATION_REQUIRED,

 FTR_TASK_REPLICA_TERMINATION_REQUIRED,

 FTR_TASK_REPLICA_CYCLE_STARTED,

 FTR_TASK_REPLICA_CYCLE_ENDED,

 } FTR_TASK_REPLICA_CONTROL_EVENT;

2.5 Tests and validation

2.5.1 Validation criteria
Validation criteria concern mainly functional qualitative issues .

Application initialization

Verification that all the threads related to FT_tasks are created correctly and
that the data structures are updated.

Application running in nominal conditions

Verification that all the threads related to FT_tasks are executed correctly and
that the checkpoints are done in time.

Application termination

Verification that the application terminates correctly (all the threads related to
FT_tasks are deleted and resources freed correctly).

OCERA IST 35102 31

Application configuration change is effective and correct after node stopped.

Verification that node failure is detected correctly and that a new
configuration of tasks is made available and runs correctly.

2.5.2 Test 1
Application initialisation procedure.

The initialization procedure has been tested by a test example described in the
ftredundancymgr/examples/ftr_appli directory.

2.5.3 Test 2
Application termination procedure.

The termination procedure has been tested by a test example described in the
ftredundancymgr/examples/ftr_appli directory.

2.5.4 Test 3
Application execution with redundancy management activated.

The nominal execution of a simple application has been tested by a test example described
in the ftredundancymgr/examples/ftr_appli directory.

2.5.5 Test 4
Application dynamic reconfiguration

This test must achieve a dynamic reconfiguration on detection of a node_failure.

This test has not been fully achieved yet.

2.5.6 Results and comments
Tests are still on going. At this stage, they are common to the two components.

The first facilities tested concern initialization procedures, nominal functionning and
termination over a distributed architecture.

The second range of tests concern the node failure detection and dynamic reconfiguration
process. This step is not yet fully achieved.

The initialization of FT redundancy management is working and ftr_tasks are created
correctly, they execute then terminate after a given number of iterations.

FTR_tasks are created, periodic behavior is insured, communication with FTR components
work.

However tuning of communication parameters using ORTE has still to be done, some
messages are lost in the current version. Change to the new version of OCERA should
permit a better control of communication and fix this problem.

2.6 Examples

A simple example is provided. It is intended to test the different points cited above and
related both to application initialization, event detection, behavior commutation and

OCERA IST 35102 32

application termination. Since there is no global example directory for Redundancy
Management, all installation and testing is done in the examples subdirectory located within
the ftredundancymgr component.

2.6.1 How to run the examples
Up to now, the examples developed are common to the two components.

The example directory is located within the ftredundancymgr component :

ocera/components/ft/ftredundancymgr/examples/ftr_appli

It is the Makefile located within this directory that builds the test application. In order to run
the example it is necessary to compile and start the ftredundancy management facility
first.

Implementation :

The ft/ftredundancymgr/examples/ directory has the following structure:

 examples

 ! --- README

 ! --- INSTALL

 ! --- Makefile

 ! --- ftr_appli

 ! !--- README

 ! !--- INSTALL

 ! !--- Makefile

 ! !--- include

 ! ! !---ftr_appli.h

 ! !--- src

 ! ! !---ftr_appli.c

The ftr_appli is a simple application that has been developed to test the ftredundancy
management facility.

The general OCERA Makefile file permits the compilation of the overall OCERA tree
provided options are selected in the configuration step (see OCERA HOWTO for OCERA
configuration steps). However examples can be compiled separately afterwards.

OCERA IST 35102 33

Compilation :

In order to compile the example please follow next steps :

- Go to the ft/ftredundancymngr/examples directory:

$ cd ft/ftredundancymngr/examples

- Clean the ft/ftredundancymngr/examples directory:

$ make clean

- Compile the examples:

$ make

Installation/Execution :

Note that execution of examples requires a distributed architecture. So the ftcomponents and
examples must be present on each machine that will be involved in the test. This requires
additional operations and controls before the example can be run.

• Install OCERA (or at least ORTE and ftcomponents) on each machine.

• Insure that rights are set so as to allow for remote execution of the code corresponding to
both components and application.

• Set up environment variables

(See section 2.7 for details)

The example runs on two nodes N1 and N2. The application has two tasks T1 and T2.

T1 master task is running on node N1 and T2 master task is running on Node2. Node1 is the
master node on application start.

To run the application one must :

• start ftredundancy management

A shell script allows for this, it is located in ft/ftredundancymngr/src :

$ ftrm_start <Node1> <Node2>

where <Nodei> is an hostname

It starts ORTEManager on each node, then starts ftredundancy components on
each node. Actually the two components of a node are linked a single Linux
executable named ft_redman.

The master node is the current node (it must be the same as the first argument
, here Node1).

OCERA IST 35102 34

• start application on master node

$ cd ftr_appli/src

$./ftr_appli

The application starts first on Node1 then on Node2. Replicas are created and
ftr_tasks started.

After a given number of cycles the application ends.

2.6.2 Description
Up to now, the examples developed are common to the two components.

Up to now , there is only one simple example provided. It runs on two nodes N1 and N2.
The application has two tasks T1 and T2.

T1 master task is running on node N1 and T2 master task is running on Node2. Node1 is the
master node on application start.

The main objective of this example is to test application registration, ftr_tasks and replicas
management, checkpointing and application termination.

2.6.3 Results and comments

The current implementation is still a prototype one. We have adopted an incremental
development cycle and some functionalities have still very basic implementation. The main
goal of this step was to provide a consistent overall framework for redundancy management.
A lot of work has still to be done to make an efficient operational environment of it.

However, the example has permitted to test the ft redundancy management overall
structure .

• Ft redundancy framework set-up and functioning

• Application registration

• Application execution

• Application termination.

The next step will cover

• Node crash detection

• Application dynamic reconfiguration.

OCERA IST 35102 35

2.7 Installation instructions

The two FT Redundancy management components provided make part of the OCERA tree
under the ft branch. We don't detail here the subtrees corresponding to degraded mode
management and ftbuilder which are described in D6.2_rep.

The ft subtree contains the following directories and files

ft

!--- ftappmon (not detailed here)

!--- ftcontroller (not detailed here)

!ftbuilder (not detailed here)

!ftredundancymgr

! README

! INSTALL

! Makefile

! doc

! examples

! ! README

! ! INSTALL

! ! Makefile

! ! ftr_appli

! ! README

! ! INSTALL

! ! Makefile

! ! include

! ! !---ftr_appli.h

! ! src

! !---ftr_appli.c

! include

! !---ft_redundancymgr.h

! !---ft_controller.h

! src

! !---ft_redundancymgr.c

! !---ft_controller.c

...

!

!

!

!

OCERA IST 35102 36

!

!ftreplicamgr

! README

! INSTALL

! Makefile

! doc

! include

! ! ft_replicamgr.h

! src

! ! ft_replicamgr.c

The general OCERA installation procedure compiles and installs the selected components.

In order to be able to use the Redundancy Management facility, at configuration, one must :

• select Soft RT-LINUX in the OCERA configuration tool and select the
ft/ftredundancymgr and ft/ftreplicamgr components.

• select ORTE in the communication components.

During this general installation procedure, all the components and examples are compiled.

The two ftredundancy components are compiled into one single executable named
ft_redman.

Remark:

As said in the 3.6 section, ftredundancy components have to be present on all the nodes of
the network devoted to applications. This means that the installation procedure must be done
on each node.

If one doesn't want to have full OCERA installation on each node, it is possible to compile
only ft and ORTE components separately from OCERA.

ORTE installation

ORTE installation in Linux user's space is rather simple (see extract of readme below or
ORTE documentation for more details D7.2 or D7.4) .

untar installation package into desired directory, enter this

directory and issue following commands.

UserSpace compilation:

./configure

make

make install

after this procedure ortemanager and orteping are placed in

/usr/local/bin.

OCERA IST 35102 37

Ftredundancy components installation

For a separate testing of the FT components :

• copy the ft subtree in the location you want,

• change the ft/Makefile to restrict compilation to ftredundancymgr and ftreplicamgr

• make

The ft/Makefile normally compiles and install all ftcomponents so you have to change it a
bit to restrict it to redundancy management as it is shown below.

1. Change the SUBDIRS line

SUBDIRS = ftappmon ftcontroller ftbuilder ftredundancymgr
ftreplicamgr

to the following

SUBDIRS = ftredundancymgr ftreplicamgr

2. Comment out the ocera related stuff

ifneq ($(wildcard ../../ocera.mk),)

include ../../ocera.mk

else

all:

 @echo -e "You should go to the ocera/ directory
and do 'make' to generate the ocera.mk file
first.\nThanks."

endif

 which becomes

#ifneq ($(wildcard ../../ocera.mk),)

#include ../../ocera.mk

#else

#all:

@echo -e "You should go to the ocera/ directory
#and do 'make' to generate the ocera.mk file
#first.\nThanks."

#endif

Installation

The normal installation process is done through OCERA config tool. We have not defined a
particular installation process yet, so executable code is located within
ft/ftredundancymgr/src and ft/ftredundancymgr/examples/ftr_appli/src

So you have to define an environment variable named FT_RM_BIN_DIR and copy
ft_redman executable and ftrm_start script in it or let $FT_RM_BIN_DIR be
ft/ftredundancymgr/src.

OCERA IST 35102 38

Chapter 3. ftreplicamgr component

3.1 Summary

• Name : ftreplicamgr

• Description : ftreplicamgr along with ftredundancymgr are two complemetary
components that provide transparent redundancy management for real-time applications.
Redundancy policy implemented is based on a passive replication model. The
ftredundancymgr is in charge of global application and network initialization and
control (including node crash detection). The ftreplicamgr is in charge of tasks level
control: tasks groups and tasks replicas management, checkpointing.

• Author (name and email) :
A. Lanusse (agnes.lanusse@cea.fr)

 P. Vanuxeem (patrick.vanuxeem@cea.fr)

• Reviewer :

• Layer : Linux Level.

• Version : V0.1

• Status : design

• Dependencies : ocera V1.0 requires ORTE component and ftredundancymgr
component

• Release date : M2

3.2 Description

The ftreplicamgr component is in charge of monitoring local tasks execution and
maintaining groups of replicas consistency. Its role is thus to :

• monitor the tasks running on the node (and detects deadline miss on tasks),

• perform periodic checkpointing of tasks contexts and shared data.

• maintain groups of replicas status

• maintain databases related to tasks contexts and shared data.

As ftredundancygr, the ftreplicamgr must be present on each node of the configuration
and must always be associated with the ftredundancy component. They must be started
before the application. A script helps starting the two components on a set of nodes.

OCERA IST 35102 39

3.2.1 Ftreplicamgr internal description.
The ftreplicamgr component consists of several threads : one main controlling thread
insures global group management of tasks located on the node, it cooperates with
specialized threads dedicated to checkpointing and error detection at task level. A watchdog
thread detects deadline misses.

This component maintains several databases and propagates data to other ftreplicamgrs
when changes related to a local master task occur.

Local databases are :

• tasks_groups_tab which contains the description of each group of tasks replicas.

• tasks_control_tab which contains information on the current status of each task (state
(i.e. created, running, ended), master/slave, start_cycle_time, deadline_cycle_time,
cycle_period,...),

• tasks_contexts_tab which contains the current ftr_task_context for each task.

• tasks_shared_data_tab which contains the current valid values (read/write) for each
shared data.

OCERA IST 35102 40

Figure 3.1 ftreplicamgr: internal view

Node_i

Redundancy Management Faclity

ftreplicamgr

Replica management

checkpoint

_manager

ftr_tasks_groups_manager

watchdog

appli/ft_replicamgr Api

tasks_groups_tab

tasks_contexts_tab

tasks_shared_data_tab

tasks_control_tab

task_

fault_

detector

Global Application & Network control

ft_replicamgr /ft_replicamgr Apift_replicamgr /

ft_redundancymgr

 Api

The checkpoint manager receives periodically :

• new context

• new shared data values

at the end of each local master task cycle.

It then propagates these new values to other members of the group.

It also receives periodically in the same manner, new values for slave local tasks replicas. It
then updates its local copy of these data.

In parallel, the checkpoint manager arms a timer corresponding to each deadline of passive
replicas. If this deadline is reached while no context has been received, a specific connexion
check is performed. If network is functioning correctly, the replica manager informs the
redundancy manager that collects information from other nodes and will decide to change
the active replica if possible. The watchdog thread is in charge of detecting such possible
deadline miss for reception of new context values from application or from other
ftreplicamgrs.

A timer is armed on starting a new cycle and reset each time information is received on time
by the checkpoint manager. If timeout occurs before, a notification is issued to task
fault_detector which then propagates it to the ft_tasks_group manager and to
ftredundancymgr.

OCERA IST 35102 41

3.3 API / Compatibility

This component uses POSIX Linux API for threads manipulation. A few additional
primitives have been defined to handle redundancy management.

As it is the case for the ftredundancymgr, this API can be divided into three subsets.

• an API for communication between application (ftr_controller) and ftrundancymgr
(ftr_controller/ftrep API).

• an API for communication between ftreplicamgr and ftredundancymgr (ftrep/ftred
API) located on different nodes,

• an API for communication between the ftreplicamgrs (ftrep/ftrep API),

ftr_controller/ftrep

ftr_notify_appli_task_created()

ftr_notify_appli_task_cycle_started()

ftr_notify_appli_task_cycle_finished()

ftr_notify_appli_task_ended()

ftr_task_context_commit()

ftr_task_context_update()

ftr_shared_data_commit()

ftr_shared_data_update()

ftrep/ftred

ftr_task_group_add_member()

ftr_task_group_remove_member()

ftr_task_group_modify_member_attributes()

ftr_notify_task_failed()

ftrep/ftrep

ftr_task_checkpoint()

ftr_ftreplicamgr_heartbeat()

OCERA IST 35102 42

3.3.1 API between ftr_controller and ftreplicamgr (ftr_controller /
ftrep API)

ftr_notify_appli_task_created

parameters :

in:

ftr_appli_task_name

ftr_appli_id

Description :

Used by the ftr_controller thread in the user's process to
communicate with the ftreplicamgr and signal the creation of a
ftr_task. The result gives the ID and the type of replica (master
or slave) behavior to adopt for this instance. The type is
determined using the group configuration for this task.

Prototype :

extern FTR_TASK_REPLICA_ID ftr_notify_appli_task_created

(FTR_APPLI_TASK_NAME,

FTR_APPLI_ID);

ftr_notify_appli_task_cycle_started

parameters :

in:

ftr_task_replica_id

issue_number

date

Description :

Used by the ftr_controller thread in the user's process to
communicate with the ftreplicamgr and signal the start of an
execution cycle of the ftr_task_replica.

Prototype :

extern int ftr_notify_appli_task_cycle_started

(FTR_TASK_REPLICA_ID,

 int,

 NtpTime);

OCERA IST 35102 43

ftr_notify_appli_task_cycle_finished

parameters :

in:

ftr_task_replica_id

issue_number

date

Description :

Used by the ftr_controller thread in the user's process to
communicate with the ftreplicamgr and signal the end of an
execution cycle of the ftr_task_replica.

Prototype :

extern int ftr_notify_appli_task_cycle_finished

(FTR_TASK_REPLICA_ID,

 int,

 NtpTime);

ftr_notify_appli_task_ended

parameters :

in:

ftr_task_replica_id

issue_number

date

Description :

Used by the ftr_controller thread in the user's process to
communicate with the ftreplicamgr and signal the end of a ftr_task.

Prototype :

extern int ftr_notify_appli_task_cycle_started

(FTR_TASK_REPLICA_ID,

 int,

 NtpTime);

OCERA IST 35102 44

ftr_task_context_commit

parameters :

in:

ftr_task_replica_id

ftr_context_id

issue_number

date

Description :

Used by the ftr_controller thread in the user's process to
communicate with the ftreplicamgr and commit the new context of a
master task replica at the end of an execution cycle.

Prototype :

extern int ftr_notify_appli_task_cycle_started

(FTR_TASK_REPLICA_ID,

FTR_TASK_CONTEXT_ID,

 int,

 NtpTime);

ftr_task_context_update

parameters :

in:

ftr_task_replica_id

ftr_context_id

issue_number

date

Description :

Used by the ftr_controller thread in the user's process to get the
new value of a ftr_task_context before each beginning of cycle.
(For a master task, the value is already set, for a slave task, the
context is read from the local value stored on ftreplicamgr).

OCERA IST 35102 45

Prototype :

extern int ftr_task_context_update

(FTR_TASK_REPLICA_ID,

FTR_TASK_CONTEXT_ID,

 int,

 NtpTime);

ftr_shared_data_commit

parameters :

in:

ftr_task_replica_id

ftr_shared_data_id

issue_number

date

Description :

Used by the ftr_controller thread in the user's process to
propagate the new value of a ftr_shared_data whose ftr_task is
writer. This is done at each end of cycle and propagated to all
ftreplicamgrs.

Prototype :

extern int ftr_shared_data_commit

(FTR_TASK_REPLICA_ID,

FTR_SHARED_DATA_ID,

 int,

 NtpTime);

ftr_shared_data_update

parameters :

in:

ftr_task_replica_id

ftr_shared_data_id

issue_number

OCERA IST 35102 46

date

Description :

Used by the ftr_controller thread in the user's process to get the
new value of a ftr_shared_data before each beginning of cycle. (For
a master writer task, the value is already set, for a slave task,
or a master reader task the context is read from the local value
stored on ftreplicamgr).

Prototype :

extern int ftr_shared_data_update

(FTR_TASK_REPLICA_ID,

FTR_SHARED_DATA_ID,

 int,

 NtpTime);

3.3.2 API between ftreplicamgr and ftredundancymgr (ftrep/ftred
API)

ftr_task_group_add_member

parameters :

in :

ftr_task_group_id

ftr_task_id

Description :

Used by the ftreplicamgr to add information related to a replica
that just started to the ftr_task_group.

Prototype :

extern int ftr_task_group_add_member(FTR_TASK_GROUP_ID,

FTR_TASK_ID);

ftr_task_group_remove_member

parameters :

in :

ftr_task_id

OCERA IST 35102 47

ftr_task_replica_desc

ftr_task_group_id

Description :

Used by the ftreplicamgr to remove information related to a replica
that just ended to the ftr_task_group. The replica is not available
any more.

Prototype :

extern int ftr_task_group_remove_member(FTR_TASK_GROUP_ID,

FTR_TASK_ID);

ftr_task_group_modify_member_attributes

parameters :

in :

ftr_task_group_id

ftr_task_group_id

ftr_task_replica_desc

Description :

Used by the ftreplicamgr to update information related to a replica
to the ftr_task_group.

Prototype :

extern int ftr_task_group_modify_member(FTR_TASK_GROUP_ID,

FTR_TASK_ID,

 FTR_TASK_REPLICA_DESC);

OCERA IST 35102 48

ftr_notify_task_failed

parameters :

in :

 ftreplicamngr_Id

 ftr_task_Id

 ftr_node_Id

 issue_number

 date

Description :

Used by the ftreplicamgr to notify a deadline miss on a task
iteration cycle. This detection is followed by a reconfiguration
phase and a call to ftr_application_config_modify for each
application.

Prototype :

extern int ftr_notify_task_failed(FTR_RED_MGR_ID,

 FTR_TASK_ID,

 FTR_NODE_ID,

 int,

 NtpTime);

OCERA IST 35102 49

3.3.3 API between ftreplicamgrs (ftrepl/ftrepl API)

ftr_task_checkpoint

parameters :

in :

 ftr_task_id

 ftr_appli_id

 iteration_number

 date

Description :

Used by the ftreplicamgr to broadcast a new context and shared
data (in writer mode) values at the end of a master task replica.

Prototype :

extern int ftr_task_checkpoint(FTR_TASK_ID,

 FTR_APPLI_ID,

int,

 NtpTime);

ftr_ftreplicamgr_heartbeat

parameters :

in : ftreplicamgr_Id

 iteration_number

 date

Description :

Used by the ftreplicamgr to signal its liveliness to the system. A
periodic signal is sent on the network and received by all the
ftredundancymgrs.

Prototype :

extern int ftr_ftreplicamgr_heartbeat(FTR_RED_MGR_ID,

 int,

 NtpTime);

OCERA IST 35102 50

3.4 Implementation issues

• Modifications to the existing RTLinux or Linux code

This component is a new one, there is no modification to existing Linux component.

• Data structures created.

Main data structures created concern :

• ftr_task_replica_desc,

• ftr_task_group.

• ftr_shared_data,

• ftr_task_context,

Data tables are :

• ftr_tasks_control_tab

• ftr_tasks_groups_tab,

• ftr_tasks_contexts_tab,

• ftr_tasks_shared_data_tab,

Control events defined are :

• ftr_replica_control_event

Structures :

typedef struct

OCERA IST 35102 51

{

 char appli_name[NAME_MAX_LENGTH];

 char appli_task_name[NAME_MAX_LENGTH];

 FTR_APPLI_TASK_ID appli_task_id;

 FTR_SCHEDULING_PARAMETERS *scheduling_parameters;

 FTR_REDUNDANCY_PARAMETERS *redundancy_parameters;

 FTR_TASK_REPLICA_STATUS replica_status;

 FTR_LOCATION replica_location;

 FTR_TASK_CONTEXT *context;

 FTR_SHARED_DATA *W_shared_data;

 FTR_SHARED_DATA *R_shared_data;

} FTR_TASK_REPLICA_DESC ;

typedef struct

{

 char group_name[NAME_MAX_LENGTH];

 char appli_task_name[NAME_MAX_LENGTH];

 FTR_APPLI_TASK_ID master_task_id;

 FTR_LOCATION master_task_location;

 FTR_TASK_CONTEXT *context;

 FTR_SHARED_DATA *W_shared_data;

 FTR_SHARED_DATA *R_shared_data;

 FTR_TASK_REPLICA_DESC replicas_tab[NB_MAX_REPLICAS];

} FTR_TASK_GROUP_DESC ;

typedef struct

{

 FTR_TASK_ID writer_task;

 FTR_DATA_STRUCT published_data;

 FTR_DATA_STRUCT private_data;

 int current_valid_version_number;

} FTR_SHARED_DATA ;

typedef struct

{

 FTR_TASK_ID writer_task;

OCERA IST 35102 52

 FTR_DATA_STRUCT published_data;

 FTR_DATA_STRUCT private_data;

 int current_valid_version_number;

} FTR_CONTEXT ;

Tables :

The FT R Nodes table :

FTR_TASK_GROUP_DESC ftr_groups_tab[FTR_TASKS_MAX];

The FT R Tasks Control Table :

FTR_TASK_REPLICA_DESC ftr_tasks_control_tab
[FTR_TASKS_MAX];

The FT R Shared Data Table :

FTR_SHARED_DATA ftr_tasks_shared_data_tab[FTR_TASKS_MAX];

The FT R Contexts Table :

FTR_CONTEXT ftr_tasks_contexts_tab[FTR_TASKS_MAX];

New types defined to describe status of various entities:

typedef enum FTR_TASK_REPLICA_STATUS {

 FTR_TASK_REPLICA_STATUS_NOT_DEFINED,

 FTR_MASTER,

 FTR_SLAVE,

 FTR_TERMINATED

} FTR_TASK_REPLICA_STATUS;

OCERA IST 35102 53

New types defined to describe control events:

typedef enum

 {

 FTR_TASK_NOP,

 FTR_TASK_REPLICA_CREATION_REQUIRED,

 FTR_TASK_REPLICA_TERMINATION_REQUIRED,

 FTR_TASK_REPLICA_CYCLE_STARTED,

 FTR_TASK_REPLICA_CYCLE_ENDED,

 } FTR_TASK_REPLICA_CONTROL_EVENT;

3.5 Tests and validation

3.5.1 Validation criteria
In a first stage validation criteria concern purely functional qualitative criteria.

Verification that in absence of abnormal situation the application runs
normally.

Verification that checkpointing works properly.

Verification that faulty events (deadline miss are detected)

Verification that the propagation of an abnormal event to the
ftredundancymgr is achieved correctly.

Verification that a faulty task commutes correctly to another replica.

In a second stage, we will verify synchronization issues.

Verification that the replacement replica activation is achieved at the right
time (next activation period of the previous running task)

In a third stage, if possible, performance issues will be targetted

Verification that commutation times satisfy minimum period requirement
from the application.

OCERA IST 35102 54

3.5.2 Test 1
Management of task periodic context and shared data checkpointing

In this test, the periodic checkpointing (of context and shared data) is performed.

3.5.3 Test 2
Detection of abnormal event (deadline miss on task_cycle_end).

The principle of deadline miss event detection is being tested.

Each time a cycle starts, a notification is received by the ftreplicamgr with the expected
deadline. A timer is armed with this deadline and reset on reception of end of cycle
notification. If timeout is reached before, a deadline miss is detected and the
ftrdeundancymgr is notified of the event. This latter then decides if the faulty task is
replaced by one of its replicas.

This mechanism is still under testing.

3.5.4 Results and comments
The testing process is still on going.

Up to now, we have tested the basic communication mechanisms between the components
involved in Fault-Tolerance redundancy management and the functioning of basic
commutation mechanisms.

This has permitted to set up a global FT framework. The principles of initialization, event
detection, commutation and termination have been settled but a lot of work has still to be
done.

3.6 Examples

Since there is no global example directory for Redundancy Management, all installation and
testing is done in the examples subdirectory located within the ftredundancymgr
component so for further details related to the next sections please refer to the 2.6 Section.

3.6.1 How to run the examples
Up to now, the examples developed are common to the two components, please refer to the
ftredundancyr examples section.

The example directory is located within the ftredundancymgr component :

ocera/components/ft/ftredundancymgr/examples/ftr_appli

3.6.2 Description
Please refer to section 2.6.2

3.6.3 Results and comments
Please refer to section 2.6.3

OCERA IST 35102 55

3.7 Installation instructions

Please refer to 2.7

OCERA IST 35102 56

