WP6 - Fault-Tolerance Components

@

Deliverable D6.4 rep - Fault tolerant
components V2

WP6 - Fault-tolerance components : Deliverable 6.4_rep - Fault-tolerant components V2
by A. Lanusse and P. Vanuxeem

Published March 2004
Copyright © 2004 by OCERA Consortium

Table of Contents

Chapter 1. INrOTUCTIONoiuiieiiieeieeiee e 1
1.1 Application and taskS MOEL...........cccvrieierie e 2
0 O g 7= P 2
O (g =S G o [0 o TR 3
1.1.3 ftr_tasks group management main PrinCipleS.........cocerereerereeseneenesee e 4
1.1.4 Simple example of redundancy management over two Nodes..............ccceeveenneee. 4
1.2 FT redundancy management architeCture OVEIVIEW...........ccceecveerieevieseeseesieeseeseeenens 5
1.2.1 Architecture of redundancy management facility on anode.............ccccccvveunenne. 6
1.2.2 Basic interaction between COMPONENLS...........ccoveevreereereenieeie e eee e e e e 7
1.2.3 Application lIfE-CYClE.......ccoiiiiiece s 8
1.2.4 Faults management at task 1eVEl............ccov e 8
1.2.5 Faults management at NOdE [EVE..........ccooiiiiii i 9
LB USEI'SVIBIW ..ttt sttt sttt ettt b et et e e e ae st s b e et et et e neenbenbenbenre s 10
1.3.1 Implementation PrinCiPIESccoueeiieiie e 10

L B2 USEI'S AP ..t ettt b et nae e 10
1.3.3 COUING SEEPS......eeveieeueeueeee sttt st et e sbe bt s e e e ss b bt e e e s e e e besseese e s e sresreene e 12
1.4 Overview of Redundancy Management APlccooeiiiiiie i 15
1.4.1 FT Redundancy Management external APl ... 16
Chapter 2. ftredundanCymgr COMPONENE.........c.uiieriiriieriie e e e e e e e sree e sreseeseesneens 19
2.0 SUMIM@Y ...ttt s e b e e s ae e s b e e e e s se e smeenneennenneenneennens 19
D L=] o1 o] o TSSO 19
2.2.1 Ftredundancymgr internal SITUCLUIE...........coeeieeiiirienieee e 20
2.2.2 Redundancy management of Redundancy management.............ccceceevereeseenne 21
2.3 APl COMPELDIHTITY.....oiueiieiieiieie e e 22
2.3.1 ftredundancymgr external APl (Appli/ftred AP)......cccooeiiieiiinieeeeee 23
2.3.2 The inter ftredundancymgr API (ftred/ftred APoooveeveevieece e 24
2.3.3 API between ftredundancymgr and ftreplicamgr (ftred/ftrepl API).................. 27
2.4 IMPIEMENEALTION ISSUES........citeeieeieeieesee e stee s e st e see et esaee e e s e e sneesneesreeaneesneesnnens 28
SR I=S K58 aTo V7 [T F= 4 o o OSSR 31
2.5. 1 Validation CrITEITA.....ccveeereeeiesieeee ettt 31
2.5, 2 TESE L bbbttt b e b e e nae e 32
P I = SO TTPR 32
P I R SRR 32
P I = TR 32
2.5.6 RESUITS @N0 COMMIENLS.......ccueiuiieriesiisieseeieee et se e se et e sne e 32
2.6 EXAMPIES ... aaa e e nare e 32
2.6.1 HOW tO run the EXampPIES...........ccoeeiiiiiecee et 33

A I B L= ok] o1 o o USRS 35
2.6.3 ReSUItS AN COMIMENTS........oiiiiiiierie et 35
2.7 INSLAl@tiON INSITUCHIONS......ccveieieieeie sttt sre e sreenae e 36
Chapter 3. ftreplicamgr COMPONENT..........ccieiieeiie e e nneas 39
3. SUMIMAIY ...t et e e n e sb e n e s e sae e reeanenreennennnens 39
A B = o 1 o1 o o USRS 39
3.2.1 Ftreplicamgr internal deSCriptioN.........c.uveeeeiererereee e 40
3.3 API/ COMPALTDIHTTY.....eeeeeeeieie et 42
3.3.1 API between ftr_controller and ftreplicamgr (ftr_controller / ftrep API).......... 43
3.3.2 API between ftreplicamgr and ftredundancymgr (ftrep/ftred API)................... 47
3.3.3 API between ftreplicamgrs (ftrepl/ftrepl APL.......cooeeiiiiiee e 50

OCERA IST 35102 iii

3.4 IMPIEMENEELION ISSUES........eeeueeieieieeitesieeie ettt sbe et se et sb e e neeens 51

GRS RI== FoX= 210 Y2 1o F= (0] o 54
RS V= 1T = (Lo g Weo: 1= (= RS 54
G I == A TR 54
TSI T == 55
3.5.4 RESUITS ANA COMMENTS.....ociiiieiee it e ettt eetr e s et e e e s s ba e e e s serae e e s sssreeaeas 55
BB EXAIMPIES ...ttt e e et e e e e et e et e e e e aeeeare e e e teanaeenaeennens 55
3.6.1 HOW tO run the €XamPIES.........cceieeiiiiieee et 55
B I B 1= o) 55
3.6.3 RESUILS AN COMMIENTS.......ceiiiieictie ettt s be e s b e s sba e e sabe e e saree s 55
3.7 INStAll@iON INSITUCTIONS.....eeii ittt s e bre e s s sabre e e s snareeeeanns 55

OCERA IST 35102 iv

Document Presentation

Project Coordinator

Organisation: UPVLC
Responsible person: Alfons Crespo
Address; Camino Vera, 14, 46022 Valencia, Spain

Phone: +34 963877576

Fax:+34 963877576

Email: alfons@disca.upv.es

Participant List

Role Id. Participant Name . Acronym = Country
(6(0) 1 Universidad Politecnica de Valencia UPVLC E
CR 2 Scuola Superiore Santa Anna SSSA I
CR 3 Czech Technical University in Prague CTU Cz
CR 4 CEA/DRT/LIST/DTS CEA FR
CR 5 Unicontrols ucC Cz
CR 6 MNIS MNIS FR
CR 7 Visua Tools S.A. VT E

Document version
Release Date Reason of change

10 26/03/04 First release

OCERA IST 35102

Chapter 1. Introduction

The main objective of the fault-tolerant work-package in OCERA is to provide two types of
facilities: degraded mode management in mono-node applications and redundancy
management in distributed applications. The first series of facilities have been described in
previous deliverables (see D6.1 and D6.2_rep).

The fault-tolerance components included in this deliverable consist of two complementary
components (ftredundancymgr and ftreplicamgr) that together provide a framework for
implementing redundancy management support for user's application. They will respectively
control redundancy at the application level and at the task level on each node.

This first implementation is intended to provide a basic framework whose goal is to offer a
global set of facilities that permit transparent implementation of redundancy for developers
of rea-time applications. It offers a passive replication model, the task model is asimplified
one (periodic tasks), fault-detection is based on heartbeats and timeouts, consistency of
replicas is ensured by periodic checkpointing.

The current implementation is located at Linux user-space level using ORTE component for
communication between nodes. However implementation choices have been made in such a
way as to facilitate the port to OCERA Hard Real-Time level when ORTE become
available at this level. Indeed these facilities can be enriched in the future.

EEHE o

A pplication level OCERA component:
UDPAPI POSIX RT API

B cCIE

POSIX RT API

Figure 1.1 FT Redundancy management components location
within OCERA architecture

Before entering in the details of the components architecture we describe briefly, the
application and tasks model used, then we introduce the main principles of functionning of
the overall architecture.

OCERA 1ST 35102 1

1.1 Application and tasks model

An application consists of a set of ftr_tasks (fault_tolerant redundant tasks).
In order to support data consistency and to facilitate tasks recovering on node crash, a task

model must verify synchronisation properties. In the current implementation, we have
introduced the following task model.

1.1.1 ftr_tasks
A ftr_task isarea-time periodic task (same parameters as pthread scheduling parameters).

All ftr_tasks are periodic, there is no other tempora synchronization than the periodicity of
the task. The basic cycle of aftr_task instance is the following.

\ Read /Init context \
I

Read inputs
[

Run to completion

[
\ Update-‘ outputs |

‘ Commit new context ‘

Wait for next period

Figure 1.2 ftr_task execution
model

A context object is defined for each ftr_task, this context contains static variables which are
changed during a period and whose change is significant for the task behavior of next
periods. This context is saved at each end of execution of an iteration. It is then broadcasted
to the task group of replicas, so that one of them can become the new master task and start
with avalid context in case of node crash.

The application developer must define the set of variables which must be part of the context
at design time. This context object is automatically updated and broadcasted at each end of
cycle.

Communication with other tasks is limited to reading and writing data in predefined shared
objects. Reading is done at beginning of the period, writing is done at the end of the period.

These abjects have only one writer, visibility of data is enabled to other tasks after the

completion of the code of the task, at the beginning of the new period. (Which means that
tasks are working on data obtained during the previous period of the writer's task).

OCERA 1ST 35102 2

When defining ftr_tasks, it is required to specify :
« the dtructure of itsftr_context object;
+ theftr_shared _data objects that will be used as inputs;

« the ftr_shared date objects that will be written by the ftr_task (only one writer per ftr-
shared data object).

Nodel

ftr shared data
p-1

ftr task master_instance Inputs |
ftr_task_context ‘

A

ftr shared data
p-1

Figure 1.3 ftr_task and ftr_shared_data relationships

1.1.2 ftr_tasks group

The redundancy management model adopted is a passive replicas management model.

Redundancy parameters have been introduced in the ftr_task data structure. These
parametersinclude :

+ the redundancy level required for the ftr_task (minimum and maximum number of
replicas);

+ thelocation of each replica;

From these information, and for each ftr_task, an ftr_tasks group is defined which gathers
dataon:

+ ftr_task_master location and status
- for each ftr_task_replica of the ftr_task_master its |ocation and status
- current valid context of ftr_master_task (from last period)

+ temporal information of ftr_task_master (date of cycle start, deadline, date of cycle end).

OCERA 1ST 35102 3

1.1.3 ftr_tasks group management main principles

Tasks group management is insured by the ftreplicamgr which periodically broadcasts the
new context emitted by the ftr_master_tasks if execution cycle completed successfully.

Moreover, if the ftr_master_task is writer of a ftr_shared_data, the ftr_shared_data new
valueis also broadcasted to other nodes at each end of cycle.

Temporal behavior of ftr_master_task execution is controlled and notification of error is
done to ftredundancymagr in case of deadline miss. If necessary areplica is elected as new
master and the previous master is deactivated. The selection of the new master is
determinigtic, it is simply the ftr_task replica located on the next available node (in an
ordered list of nodes).

1.1.4 Simple example of redundancy management over two nodes

In the following simplified example, the application is composed of two ftr tasks
implemented on two nodes. The two master replicas for tasks T1 and T2 are located on
Nodel and two dave replicas are located on Node 2. T1 and T2 periodicaly (at each end of
cycle of each task) transmit their contexts (CT1 and CT2) to ftreplicamgr which broadcasts
them to members of ftr_tasks groups of T1 and T2 (in this simple case only to T1:sl and to
T2:s2). Moreover T2 is producer of ftr_shared data SD1, so SD1 is also propagated to
Node2.

Node2
Noder] FTRApplication: node2
FTR Application : nodel Tlsl T2:s2
Tim | T2m | | ‘
. CT2
CT2 sD1
CT1
SD1

undancy M anagement Faclity

Redundancy M anagement Faclity]
; — edundancymgr | | ftreplicamgr

iftredundancymgﬂ ftreplicamgr

Replica management
Global Application & Network control

Figure 1.4 Smple example of redundancy management over two nodes

The ftredundancymgr controls global network, detects possible node crash and decide of
dynamic reconfiguration when such an event happens. Information on application status is
thus also replicated within each node. Such transmission of information is totally transparent
to the user.

OCERA 1ST 35102 4

1.2 FT redundancy management ar chitecture overview

Asviewed in the previous section, the implementation of redundancy management requires
two OCERA RTLinux components located at the application level on each machine of the
network.

a Redundancy manager (ftredundancymgr) in charge of the global application
monitoring and redundancy policy. This component is in charge of application
initialization and control of overall distributed architecture. It also performs node crash
detection through lifelines control using heartbeats. On detection of such failure, dynamic
reconfiguration of application is activated. New master tasks are elected in order to
replace tasks which were located on the faulty node. Low level control of execution of
tasks is delegated to a replica manager which is in charge on insuring consistency of
groups of redundant tasks (see below).

a Replica manager (ftreplicamgr) in charge of the low level control of the tasks. Tasks
groups are defined with a master and several daves depending on the redundancy level
required for the task. Tasks are al periodic tasks, only the master task of a group is
active, a each end of cycle, checkpointing is performed. The new context of the task is
then broadcasted to al replicas of the task. If atimeout is detected on a periodic task, a
notification is issued to ftredundancymgr which will then test if corresponding node is
gtill alive and decide about action to be undertaken. (Change current master task to an
other one or use default action, or detect node crash and reconfigure all application).

‘ Node2
Nodel
Redundancy M anagement Faclity

} ftreplicamgr
ftrggy@ie}rfymgr § appli_controller P 9
hearbeaﬂ ‘ ftr_tasks_groups_manager
“node_ | o 3
At fotiiestien watchdog | icheckpoint
: i —manager manager
 detector | =

Replica management

Global Applice ion & Network control

-:.-.zq
CT1 |
FTR A pplication : nodel
main ftr_control
T § i ftr_task £ 0
- Tim @ﬂ

Figure 1.5 Global FT Redundancy Management Architecture overview

We give arapid overview of this overall framework functioning principles in the following
two sections.

OCERA 1ST 35102 5

1.2.1 Architecture of redundancy management facility on a node

On each node, the two components (ftreplicamgr and ftredundancymgr) are implemented
as two separate threads that cooperate within aLinux process in user's space.

Node 0
Redundancy Management Facility User Application
ftredundancymgr liControlThread
_ | | app

P \E\thr_tasks """"
treplicamar 3 ftr_task2 i
i ftr_task1

A -

v v vy vy

ORTE communication component

[] Linuxprocess

Linux thread

Figure 1.6 Overview of RedundancyManagement Architecture on a node.

The user application runs in a separate Linux process. In the current implementation, all
application tasks are implemented as threads within one single application Linux process.
(This choice has been made in order to be closer to the future implementation at Hard
RTLinux level where all threads share the same space).

Within this process, an application control thread is created at application init, it isin charge
of application tasks creation and communication with the ftredundancy management facility.
This thread is transparent to the user which uses a dedicated APl to create and run
application tasks.

An application task is encapsulated within a ftr_task which insures periodic control of the
task and checkpointing (communication with the ftreplicamar).

Communication between processes and between nodes are handled by ORTE
communication component.

There is one instance of each component on each node of the network. The redundancy
manager on each machine has a complete knowledge of application current configuration
and constraints, so that it can take decisions in an autonomous way if necessary.

The replica managers maintain atable of al ftr_tasks groups and maintain the current status
of each member of a group (master, passive _replica, unavailable replica) and its location.
Each active replica, periodically sends its new context which is then broadcasted to all other
members of the group. The protocol must insure reliable atomic transfer to all members of
the group of replicas. The replica manager, regularly verifies that context checkpoint has
been performed on time.

OCERA 1ST 35102 6

1.2.2 Basic interaction between components

The main interactions between components are illustrated in following figure where the two
instances of components located on a node appear as two separate threads within one Linux
process, services offered are shown within oval forms. This framework is present on each
node of the distributed architecture required for the application.

6
Figure 1.7 . Internal and external interactions of ft_redundancy components

Main functioning loop: Task level fault detection :

1: application init a : tak garted + deadline

2: tasksgroups creation b : task ended

3: task creation, start or end ¢ : timeout reached task not responding
4: task cyde started f2: task j on node n not responding

5: task cycle ended + context or task end

6: checkpoint towards passve replicas

Node level lifdiness contral :

li : lifelinessin (node_i isalive) received from each node
lo: current nodeisalive sent

f1: nodei not responding

In this figure three types of protocols are shown, the first one concerns the main functioning
loop, the second concerns node crash detection and related reconfiguration process, the third
one concerns timeout detection at task level, the task may be faulty but not the node.

OCERA IST 35102 7

1.2.3 Application life-cycle

Previoudly to application start, the redundancy management must be made available. A
script shell permits the installation of the two components onto a set a specified nodes. Once
ftredundancymgr and ftreplicamgr are installed and ready, one can start an application.

At init, application is started in master mode on one node which is called node O,
information on application configuration is provided to the ftredundancymagr:

« number of tasks and tasks descriptions (including redundancy level parameter for each
task),

+ number of nodes and nodes |Id
« initial mapping of tasks onto nodes

« ordered list of nodes for dynamic reconfiguration on node crash (determines node
replacement choice)

According to this information, the ftredundancymgr instantiates its internal application
description table and remotely starts application on other nodes in slave mode.

It then builds tasks groups (master task + its replicas) and sends information for each group
to the ftreplicamgr whose role is two control the functioning of each task and to maintain
the consistency of all replicas for each tasks group.

The ftreplicamgr instantiates its own tasks groups table and task control status table, then
enables creation of tasks and tasks replicas on each node (actually task creation itself is
achieved within the User Application process by the internal application control thread, the
task may be created as active or passive).

When all tasks are created on each relevant node, start of tasks is enabled. Each task thread
becomes ready and is then started according to its mealtime parameters and to scheduling
policy. At each cycle, start of cycle is notified to ftreplicamgr; at each end of cycle, end is
notified and the checkpointing of the new task context is achieved. A watchdog verifies
timeliness of task completion and a fault notification is issued in case of deadline miss on a
task.

On application termination all tasks are terminated, then application instances are finished

on each node and application is unregistered. The redundancy management facilities stay
available for a new application or may be ended by a specific command.

1.2.4 Faults management at task level

The ftreplicamgr located on each node controls the execution of each master replica,
namely: start-time, end-time, and timeliness of transmission of context.

If a deadline miss occurs on a ftr_task (the master did not transmit its context on time), a

new master is eected amongst the corresponding ftr_tasks group and the faulty one is
terminated.

OCERA 1ST 35102 8

The ftreplicamgr notifies the ftredundancymgr of the fault, this latter then updates its
new tasks configuration and broadcasts it to each node.

The ftreplicamgr located on the node where the new master task will from now on be
located, switches the ftr_task replica on and makes it run in master mode instead of slave
mode. It will start at the next period (P+1) of the ftr_task with the last valid context (context
P-1) . Severa strategies can be envisaged to provide smoother behavior to the application,
but for the moment only this rather drastic solution isimplemented (one period is lost).

1.2.5 Faults management at node level

The ftredundancymgr of each node periodicaly sends a lifelines message to all other
nodes, anode failure_detection mechanism checks arrival of these messages.

A silent node is considered as faulty and retrieved from the set of available nodes. All active
tasks on that node are switched off and a new replacement master task is elected for each
one. The process of eection is deterministic (using the ordered list of valid nodes). If it is
not possible to find a new master task then the current default action is to end the overall
application.

As said previoudly, this first implementation provides a global framework build on top of
OCERA Soft RT level, al the application tasks are periodic tasks.

Though the implementation of these components was initially intended to be developed at
both Hard and Soft mealtime levels, the current version has been implemented using results
of OCERA available at end of phasel before full integration be ready. The implementation
at hard RT level should however be easily ported to Hard real-time level when ORTE
components at thisleve are available.

OCERA 1ST 35102 9

1.3 User'sview

1.3.1 Implementation principles

Implementation principles are driven by the will to make redundancy management as
transparent as possible to the application developer. So in order to develop an application,
the user can amost forget about underlying ft redundancy management architecture.

To support the approach, two features are introduced and used within the user's process :
+ creation of a control thread dedicated to redundancy control (ftr_control _thread)
« encapsulation of application tasks into ftr_tasks threads

The ftr_control_thread is in charge of initialization and control of application. Created
within the user application process it communicates with ftredundancymgr and
ftreplicamar.

The ftr_tasks threads are generic encapsulation of redundant tasks. A ftr_task thread is
created for each user's application redundant task. It ensures periodic execution of user's task
routine, management of context entity and of shared data entities and communication with
ftreplicamgr for checkpointing.

Communication with ftreplicamgr and ftredundancymgr are achieved using ORTE
publisher/subscriber mechanisms both within a Node and between nodes, but this is
transparent to the user since calls are made either from ftr_control thread or from
ftr_tasks threads generic part using specific internal APIs that are described in the
corresponding component sections below.

1.3.2 User's API

The approach chosen results in a very limited user's APl necessary mainly for initialization
and termination of user application. Most of user' s application code consists in routines that
will berun within ftr_tasks threads.

int ftr_application_ register(char *, FTR APPLI DESC * |,
ManagedApp *);

int ftr_appli_desc_init(FTR _APPLI DESC *);
int ftr_appli _task create(FTR APPLI TASK DESC *);
int ftr_appli_task end(int);

int ftr_application_term nate(char*);

FT redundancy management User API

The important issue is to specify the context data and shared resources for each task at
design. Concurrency control over such shared data is then automaticaly insured by the
execution model. Then threads routine can be written simply in ausual way.

OCERA 1ST 35102 10

In the following figure we illustrate on avery simple example how an application is started.

Once the design is done, the resulting architecture on a node is composed of the user's
process and of the Redundancy Management Facility process (in the following view we do
not show ORTE process).

Within the user's process the yellow (or white) parts concern code written by users and blue
(or gray) part concern generic ftr code.

Nodel
FTR Application : nodel
main | 1 = ftr_control
5 »f—
- : ‘
g; o N R - ftr_task
- . < ‘ 10 s lrLm
| § : rim
1 4] L | 31 7 __i¢
CT1
S SO
3 Il
ftredundancymgr 3 ! ftreplicamgr
,,,,,,,,,,,,,,,,,,,,,,,,,,,, S R
Redundancy M anagement Faclity

Replica management
Global Application & Network control

Figure 1.8 Interactions with redundancy Management facility components form User's Application

First the application creates the ftr_control thread (1), then it cals the
ftr_application_register primitive to register the application (2), the
ftr_control_thread then communicates with the ftredundancymgr to setup data (3) for the
new application, and waits for acknowledgment (4) from it before returning OK (5) to the
user main thread.

Then the ftr_appli_desc_init primitiveis called to setup application data structures
and ftr_tasks threads (6). At this step ftr_tasks threads are created but the corresponding
users routines are not started. When al the infrastructure is ready, the ftreplicamgr notifies
the ftr_control_thread (7) which returns OK (8) to user's main thread.

Finally the user can call the ftr_appli _task_create primitive to start a ftr_task.(9).
The ftr_controller_thread then makes the ftr task thread start periodic call to the
corresponding user's ftr_task_routine (10).

Two other primitives are available to end an ftr_appli_task (ftr_appli _task_end) and
to terminate the overall application(ftr_applicati on_term nate).

OCERA 1ST 35102 11

The user has to define specific data structures, one to describe the overall application
structure and one to describe each ftr_task.

It is intended that the Ftbuilder tool (already available for the specification of degraded
mode management) will assist the designer to determine these features and automatically
generate the corresponding data structures. For the moment this facility is not implemented
yet, and datais provided in afile read by the ftr_appli_desc_init primitive.

1.3.3 Coding steps

An application can be written rather simply following the different generic steps :

#i ncl ude <stdio. h>

#i ncl ude <string. h>

#i ncl ude <stdlib. h>

#i ncl ude <uni std. h>

#i ncl ude <orte. h>

#i ncl ude <netdb. h>

#i ncl ude <pt hread. h>

#i ncl ude <sinpl e_appli.h>

#i ncl ude <ftredundancyngr. h>
#i ncl ude <appli_controller.h>

ManagedApp *appli;
pthread_t ftr_control _thread;
int main(void)
{
int res = 0;
void *ret;
FTR_APPLI _DESC appl i cati on_desc;
FTR _APPLI TASK DESC application_task desc_1;
FTR _APPLI TASK DESC appli cation_task desc_2;

1. Declarations for ftr_application
[* Creation of ftr_control _thread */

pthread create(& tr_control thread, NULL,
(*ftr_main_control _routine),
NULL) ;

if (res !'=0)
perror (" Redundancy Managenment thread creation failure ..
exiting");
exit(-1);

2. Creation of ftr_control_thread of ftr_application

OCERA 1ST 35102 12

The ftr_control_thread of the application is created in the beginning of the main thread to
install the ftr architecture within the application process. In the future, it will be replaced by
amacro. The ftr_main_control_routine, is a generic control loop that monitors events from
and to the ftr_process. It also accepts requests form the user main thread.

[* Init appli_desc structure */
res = ftr_appli_desc_init(&pplication_desc);

if (res == -1)
perror("Redundancy Managenent : application desc init failed ...
exiting");
exit(-1);

3. Initialazition of application data structures
During this step, data structures describing application and tasks are initialized.

/* Register application */

res = ftr_application_register(APPLI _NAME,
&appl i cation_desc, appli);
if (res == -1) {
perror (" Redundancy Managerment : application registration
failed...
exiting");
exit(-1);

4. Registration of application

Application registration is done towards ftr process which in turn propagate information
over network (thanks to ORTE) to other ftr processes. (Application is also registered as
ORTE Application). (Internal tables are initialized, groups of replicas are created and
instances created on each node).
/* Tasks creation */
application_task _desc_1 = application_desc.appli_tasks_tab[1];
application_task desc_1.appli_task routine = ft1;
res = ftr_appli_task create(&application_task desc 1);
if (res == -1)
perror ("Redundancy Management : task creation (1) failed...
exiting");
exit(-1);

5. ftr_tasks creation for ftr_application

During this step each application task is created using the ftr_task_desc of each one. This
steps defines mainly the routine to be run within the generic ftr_task _thread and the related
real-time parameters (period, estimated_duration, deadline). At the end of each period, the
current context is sent to all its replicas on other nodes.

Once thisis done for each task, the application runsin anomina way.

OCERA 1ST 35102 13

To end atask the following call is necessary.

/* Requiring End of Task 1 */
res = ftr_appli_task end(1);

6. ftr_tasksending for ftr_application

This ends the corresponding ftr_task (and all its replicas). All ftr_tasks have to be ended
before application itself can be ended.

/* Requiring Application Term nation */

ftr_application_termnm nate(APPLI _NAME) ;

/* Waiting for end of control thread */
pthread_join(ftr_control _thread, &et);
if (ret !'= PTHREAD CANCELED) ({

i = (int) ret;
printf("Main : end of ftr_control _thread ret = %l\n", i);

printf("\nAppli ending : ");
return O;

7. Termination of ftr_application

Once adl the ftr_tasks are ended, resources are freed and the ftr_control _thread is ended, then
application terminates.

Obvioudly, the user must in addition provide the code of the routines that will be run within
each ftr_tasks thread. A pointer to this routine is amember of the ftr_task_desc structure.

In our simple example :

int ftil(int i)

{
printf("Function ftl running with arg %d\n",i);
sl eep(3);

return O;

The status of the current implementation is still in a testing phase. The example
implemented tests application setup, execution and termination.

OCERA 1ST 35102 14

1.4 Overview of Redundancy Management API

The Fault-Tolerance components described in this document have to be used jointly since
they interfere strongly. It is the reason why though each one has its own API described in a
distinct section, it may be usefully to get a general overview of them.

The external user API is actually restricted to very few functions :

- ftr_application_register(),

« ftr_appli_desc _init(),

« ftr_appli_task_create(),

- ftr_appli_task_end(),

« ftr_application_terminate()

They are called within user's main application thread and handled by the ftr_control_thread
(named hereafter ftr_controller) running within the application process. Then the
ftr_controller uses interna APl to communicate with ftredundancymgr and with

ftreplicamgr.

The ftredundancymgr has a small external API that is used to start or end the redundancy
management facility.

In addition, each component has also internal API(s) that permit interactions between them.

Application Redundancy Management

ftredundancymgr
ftr_redundancy_nanagenent _start ()
ftr_redundancy_managenent _end()

User Application Main

ftr_application_config_init()
ftr_application_config_nodify()

ftr_notify_node_failed()
ftr_controller ftr_application_config_checkpoint ()
ftr_ftredundancyngr_heart beat ()

ftr_application_register () -
ftr_appli_desc_init() tr_task_group_init()
ftr_appli_task_create() tr_task_group_destroy()

ftr_appli_task_end()
ftr_application_term nate()

_ _ ftr_task_group_add_nenber ()
tr_noti fy_appl it ask_creat ed() ftr_task_group_renove_nenber ()
tr_notify_appli_task_cycle_started() ftr_task_group_nodify menber_attributes()

A

tr_notify_appli_task_cycle_finished()

tr_notify_appli_task_ended() ’(tr_noti fy task _failed()
ftr_task_context_commt() _
fitr_task_cont ext _updat e() ftr_task_checkpoint ()
fitr_shared_data_conmit () ftr_ftreplicangr_heartbeat ()
f

tr_shared_dat a_updat e() ftreplicamgr

Figure 1.9 Global view of ft redundancy management API(s)

The user's API is described hereunder while next chapters describe in details the two FT
components.

OCERA 1ST 35102 15

1.4.1 FT Redundancy M anagement external API

ftr_appli_desc_init
Parameters :
in

appl i cati on_desc

Description :
Used to initialize locally (within user's process) data strutures

related to a new application (nodes configuration,
ftr_tasks_groups, ftr_tasks descs).

Pr ot ot ype :
extern int ftr_appli_desc_init(FTR_APPLI _DESC *);

ftr_application_register
Paranmeters :
in

appl i cation_nane

appl i cation_desc

ORTEhandl e
out

application_id
Description :

Used to register the new application and nake it handl ed by
ftredundancy nmanagenent. Anbng argunents, it is necessary to
provi de the ORTE handle to the managed application that Is used
for communi cations.

Prot ot ype :

extern FTR _APPLI ID ftr_application_register(char *,
FTR_APPLI _DESC * |,
ManagedApp *);

OCERA 1ST 35102 16

ftr_appli_task_create

Paranmeters :

in

ftr_appli_desc
out

ftr _task id
Description :

Creates the ftr_task entity (generic thread inplnenting periodic
ftr behavior) with real-tine and redundancy managenent paraneters
provided by the user within the ftr_appli_desc structure

The internal tasks status database is updated.

Pr ot ot ype

extern FTR_TASK ID ftr_appli_task_create(FTR_APPLI _TASK DESC *);

ftr_appli_task_end

Parameters :

in

ftr task id

Description :

Used by application to end an ftr_task and its associated
replicas.

Pr ot ot ype
extern int ft_task end(FTR TASK ID ftr_task id);

OCERA 1ST 35102 17

ftr_application_term nate
Parameters
in

application_id

Description :

Used to term nate application. Norammy all ftr_tasks have been
term nated before calling it.

Pr ot ot ype :
extern FTR_APPLI _ID ftr_application_term nate();

OCERA 1ST 35102

18

Chapter 2. ftredundancymgr component

2.1 Summary

Name : ftredundancymgr
Description : ftredundancymgr aong with ftreplicamgr are two complementary
components that provide transparent redundancy management for real-time applications.
Redundancy policy implemented is based on a passive replication model. The
ftredundancymgr is in charge of globa application and network initialization and
control (including node crash detection). The ftreplicamgr is in charge of tasks level
contral: tasks groups and tasks replicas management, checkpointing.
Author (name and email) :

A. Lanusse (agnes.lanusse@cea.fr)

P. Vanuxeem (patrick.vanuxeem@cea.fr)
Reviewer :
Layer : application Linux Level
Version: V0.1
Status : test
Dependencies: oceraV1.0 ORTE component and requires ftreplicamgr component

Release date: M24

2.2 Description

The ftredundancymagr insures redundancy management at global application level.
Therole of the ftredundancymgr component covers the five following points:

it sets up the redundancy management infrastructure and installs and configure the
ftreplicamgr,

it sets up the initial configuration of application

it monitors the overall architecture (node crash detection)

it achieves dynamic reconfiguration of application in case of node crash.
it terminates and performs clean-up at application end.

ftredundancymgr and ftreplicamgr insure together the redundancy management facility on
anode. They have to be started before the application.

They are replicated on all the nodes defined in the configuration at start of the facility. The
starting node is considered as master node, the others are semi-active replicas (see below).

OCERA 1ST 35102 19

Communication between them and with their corresponding component on other nodes
relies on ORTE Publisher/Subscriber communication model. This permits easy broadcast of
application data or application status over the different nodes. This communication is
transparent to the application devel oper.

2.2.1 Ftredundancymgr internal structure

We describe here the internal structure of the ftredundancymgr. For feasibility reasons,
entities appear without their prefix (ftr_).

Node i

Redundancy M anagement Faclity

ftredundancymgr

nodes_tab |

appli_controller

applis_tab

-l
|

fffffffffffffff v el
hearbeat% #

- node_

1dy JBweoijde S 1y/16wAouepunpal 1y

3 crash 3notification§ tasks_groups_tab
- | _manager |
! detector

ft_redundancymgr /ft_redundancymgr Api appli/ft_redundancymgr Api

Global Application& Network control

Figure 2.1 ftredundancymgr : internal view

The ftredundancy manager component consists of one main controlling thread that insures
applications control and dedicated threads that are in charge of node control. These latter
threads insure respectively, heartbeat service, node crash detection and notifications
management.

A nodes database nodes tab contains information on all nodes handled by the redundancy
management facility. (That is static nodes description data and nodes control status data).
The nodes tab is created by the ftredundancymagr prior to application start. The database
isinitialized, heartbeat is started along with node_crash detection and natification

management.

The appli_controller thread is a FSM waiting for application events to occur, and reacting
accordingly.

On application registration, it creates a new entry in the applis_tab and instantiates the

OCERA 1ST 35102 20

corresponding data structure. An application description contains both system configuration
data (numer of nodes and their names) and data related to its tasks (number and
tasks_descriptions).

From these information entries in other databases are created and completed with the
description of the applications tasks and application tasks groups (location of master and
dave replicas for atask).

Thetasks groups tab storesinformation on replicas groups. For each group, information
on task redundancy parameters, task status and on location of replicas is maintained.

Once thisis done, information is propagated to ftreplicamgr in order to instanciate tables
related to groups management.

When ftreplicamgr isready, registration is completed and an acknowledgement is provided
to the application by the ftredundancymgr.

The application can then start creating tasks. This protocol is handled by the ftreplicamgr
and task_status and group_status is propagated to ftreplicamgr (see chapter3).

If anode_crash is detected, the notification_manager analyses the event in relation with
information coming from other nodes, if node crash is confirmed, the ftredundancygr
defines anew configuration of tasks groups (election of new tasks master replicas among
replicas groups for each master located on the faulty node) updates its data bases and
propagate information to ftreplicamgr.

2.2.2 Redundancy management of Redundancy management

As said above, the two ftredundancy management components are replicated on all nodes.
It is thus necessary to precise how this replication is handled.

The code of each of these component is unique and executed on each node. The only
difference between nodes isthat one is considered as master for redundancy management
facility. A Flag determines the status for each node.

The starting node is the master. It is this node that is responsible for data bases initialization,
when anew application is created and for databases updates as |ong as the node doesn't
crash. These databases are maintained consistent by broadcast of changes. Except for this
role, the rest of the functioning of the componentsis the same.

In the same way, the tasks checkpointing process insures the consistency between interna
tasks_groups databases of different nodes.

When a node crashes, reconfiguration decisions are made by the master ftredundancymgr
and propagated to others.

If the master node crashes, the next valid node in the nodes_table becomes the master node
and performs dynamic reconfiguration of tasks located on this node.

OCERA 1ST 35102 21

2.3 API / Compatibility

This component uses posix Linux APl for threads manipulation and ORTE OCERA
component API for communication between nodes.

We have already introduced the User's API in chapterl, we describe here API that have been
defined in order to make the various ftr edundancy management components cooperate.

The API related to ftredundancymgr can be divided into three subsets :
an API for communication between application and ftrundancymagr (appli/ftred API).

an API for communication between ftredundancymgrs (ftred/ftred API) located on
different nodes,

an API for communication with the ftreplicamgr (ftred/ftrep API),

Appli/ftred
ftr_redundancy_management_start()

ftr_redundancy_management_end()

ftred/ftred
ftr_application_config_init()
ftr_application_config_modify()
ftr_application_config_checkpoint()
ftr_ftredundancymgr_heartbeat()
ftr_notify _node failed()

ftred/ftrep

ftr_task_group_init()
ftr_task_group_destroy()

OCERA 1ST 35102 22

2.3.1 ftredundancymgr external APl (Appli/ftred API)

This API islimited to start and end of the ftredundancy management facility.

ftr_redundancy_nanagenent start()
paraneters :

in:

mast er _node | P

nodes_|i st

Descri pti on:

Used to start the ftredundancyngr and ftreplicangr on each
speci fi ed node. The ftredundancy conponents are started on the
mast er node, then on the others. Heartbeat and network failure
detection starts. The conponents are ready to accept application
registration.

Pr ot ot ype
extern int ftr_redundancy_managenent _start(FTR_NODE_ID

FTR_NODES LI ST);

ftr_redundancy_nmanagenent _end()

paraneters :

in :

Descri pti on:

Used to end the ftredundancynmgr and ftreplicamgr on each specified
node. The ftredundancy conponents are ended node by node, then the
mast er node term nates. The conponents are ready to accept
application registration.

Normally this call should be done when there is no nore
application running.

Pr ot ot ype
extern int ftr_redundancy_managenent start(FTR _NODE |ID);

OCERA 1ST 35102 23

2.3.2 Theinter ftredundancymgr API (ftred/ftred API)

This API is used to permit coordination between the various ftredundancymgrs present in
the configuration, the different functions are not seen by the application developers.

ftr_application_config init()

paraneters :

in:
appli_id
appli_config
Descri pti on:

Used by the ftredundancyngr to initialize locally the
configuration of an application.

Once this is done, it transnmits the new tasks_groups to
ftreplicangr and conmit the new status of its tables to other
nodes using ftr_application_config_checkpoint().

Pr ot ot ype :
extern int ftr_application_config init(FTR_APPLI ID,
FTR_APPLI _CONFI G ;

ftr_application_config_nodify()

par ameters :

in:
appli_id
appli_old_config

appli _new config

Descri ption:

Used by the ftredundancyngr to update locally the current
configuration for an application.

Once this is done, it transmts the new task _groups to

ftreplicamgr and commit the new status of its tables to other
nodes using ftr_application_config_checkpoint().

OCERA 1ST 35102 24

Pr ot ot ype

extern int ftr_application_config_init(FTR_APPLI _ID,
FTR_APPLI _CONFI G,
FTR_APPLI _CONFI G ;

ftr_application_config_checkpoint

paraneters :

in:
application_config
i teration_nunber
dat e

Description :

Used by the master ftredundancymmgr to broadcast a new
configuration to other ftredundancyngrs. This is done at each
configuration change, whether it is due to task or node failure.

Pr ot ot ype
extern int ftr_application_config_checkpoint(FTR_APPLI ID,
FTR_APPLI CONFI G

int,
Nt pTi e) ;
ftr_ftredundancyngr heart beat
paraneters :
in: ftredundancyngr _|d
i teration_nunber
date
Description :
Used by the ftredundancymmgr to control liveliness of the system

A periodic signal is sent on the network and received by all the
ot her ftredundancyngrs.

Pr ot ot ype
extern int ftr_ftredundancyngr heartbeat(FTR_RED MZR | D,
int,

Nt pTi re) ;

OCERA 1ST 35102 25

ftr_notify_node_failed

paraneters :

in:
ftreplicamgr_Id
nodel d
i ssue_numnber
date

Description :

Used by the ftredundancymmgr to notify a node crash to other
nodes. This detection is followed by a reconfigurati on phase and a
call to ftr_application_config nodify for each application

Pr ot ot ype

extern int ftr_ftredundancyngr heartbeat(FTR_RED MER | D,
FTR_NODE_|I D,
i nt,

Nt pTi e) ;

OCERA 1ST 35102 26

2.3.3 API between ftredundancymgr and ftreplicamgr (ftred/ftrepl
API)

The ftredundancymgr and ftreplicamgr share the control of ftr_tasks groups. The
ftredundancymgr initializes the data structure for the tasks groups tab and the
ftreplicamgr populate and updates it as replicas are started, deleted or change their status
from slave to master. Each change is propagated to other nodes by the ftredundancymagr.

ftr_task _group_init
paraneters :
in:

ftr_task _desc
out

ftr_task group_id
Description :

Used by the ftredundancyngr to instantiate its internal
tasks_groups_tab. This call sets the group configuration for a
ftr_task using ftredundancy paraneters of the ftr_task
(redundancy | evel, redundancy policy, location of replicas). Each
time a ftr_task replica is created, or deleted, the ftr_task group
is updated by the ft _replicangr using the two calls
ftr_task_group_add nenber, ftr_task group_renove_ nenber.

Prototype :
extern FTR TASK GROUP_ID ftr_task group_init(FTR TASK DESC *);

ftr_task_group_destroy

paraneters :

in:

ftr_task_group_id
Description :
Used by the ftredundancyngr to destroy an entry in its
tasks_groups_tab when a ftr_task and all its replicas are ended.
Prototype :

extern int ftr task group destroy(FTR _TASK GROUP ID);

OCERA 1ST 35102 27

2.4 mplementation issues

+ Modifications to the existing RTLinux or Linux code
This component isanew one, there is no modification to existing Linux component.

- Datastructures created.

Main data structures created concern :

« ftr_node,
- ftr_appli_desc,
« ftr_task_desc,

 ftr_task_group.
« ftr_shared data,

« ftr_task_context,

Datatables are:
« ftr_nodes tab,
ftr_applis _tab
« ftr_tasks tab

ftr_tasks group_tab,

Control events defined are:
- ftr_appli_control_event

« ftr_lifeliness_control _event

OCERA 1ST 35102

Structures :

typedef struct
{
char appli _name[NAME_MAX LENGTH] ;
FTR NODE I D node_id;
FTR_APPLI _I D node_applis_list;int appli_tasks_nb;
FTR_APPLI _TASK_DESC appli _t asks_t ab[APPLI _MAX_TASKS_NB] ;
} FTR_NODE_DESC ;

typedef struct
{

char appl i _name[NAME_MAX_LENGTH] ;

FTR APPLI _ID appli _id;

int appli_tasks_nb;

FTR_APPLI _TASK_DESC appli _t asks_t ab[APPLI _MAX_TASKS_NB] ;
} FTR_APPLI _DESC ;

t ypedef struct
{
char appli_nanme[NAME_MAX LENGTH] ;
char appli _task_nane[NAME_MAX_LENGTH] ;
FTR_APPLI _TASK I D appli_task_id;
char appli _task_behavi or _nanme[NAVE_MAX_LENGTH] ;
int (*appli _task routine)(int);
FTR_SCHEDULI NG_PARAMETERS *schedul i ng_par anet ers;
FTR_REDUNDANCY_ PARAMETERS *redundancy_par anet ers;
} FTR_APPLI _TASK_DESC ;

OCERA 1ST 35102

29

Tables:
The FT R Nodes table:

FTR_NODE_DESC ftr_nodes_t ab[] FTR_NODES MAX] ;

The FT R Applistable:

FTR_APPLI _DESC ftr_applis_tab[FTR APPLI S_MAX] ;

The FT R Tasks table:

FTR_APPLI _TASC DESC ftr_tasks_tab[FTR TASKS MAX] ;

The FT Rtasks _groups_table:

FTR TASK GROUP_DESC ftr_tasks _groups_tab[FTR TASKS MAX] ;

New types defined to describe status of various entities:

typedef enum FTR_NODE STATUS ({
FTR_NODE_STATUS_UNKNOWN,
FTR_NODE_CX,
FTR_NODE_NOK

} FTR_NCDE_STATUS;

typedef enum FTR _TASK STATUS ({
FTR_TASK_STATUS_NOT_DEFI NED,
FTR_TASK_CREATED,
FTR_TASK_RUNNI NG,
FTR_TASK TERM NATED

} FTR _TASK STATUS;

typedef enum FTR_TASK_REPLI CA_STATUS {
FTR_TASK_REPLI CA_STATUS_NOT_DEFI NED,
FTR_MASTER,
FTR_SLAVE,
FTR_TERM NATED

} FTR_TASK REPLICA STATUS;

OCERA 1ST 35102 30

New types defined to describe control events:

typedef enum
{
FTR TASK NOP,
FTR TASK CREATION REQUIRED,
FTR TASK TERMINATION REQUIRED,
FTR APPLICATION TERMINATION REQUIRED

} FTR_APPLI CONTROL EVENT;

typedef enum
{
FTR_TASK NOP,
FTR TASK REPLICA CREATION REQUIRED,
FTR TASK REPLICA TERMINATION REQUIRED,
FTR TASK REPLICA CYCLE STARTED,
FTR TASK REPLICA CYCLE ENDED,

} FTR_TASK REPLICA CONTROL_EVENT;

2.5 Testsand validation

2.5.1 Validation criteria
Validation criteria concern mainly functional qualitative issues .

Application initialization

Verification that all the threads related to FT_tasks are created correctly and
that the data structures are updated.

Application running in nominal conditions

Verification that al the threads related to FT_tasks are executed correctly and
that the checkpoints are done in time.

Application termination

Verification that the application terminates correctly (all the threads related to
FT_tasks are deleted and resources freed correctly).

OCERA 1ST 35102 31

Application configuration change is effective and correct after node stopped.

Verification that node failure is detected correctly and that a new
configuration of tasks is made available and runs correctly.

252Test 1
Application initialisation procedure.

The initialization procedure has been tested by a test example described in the
ftredundancymgr/examples/ftr_appli directory.

253 Test 2
Application termination procedure.

The termination procedure has been tested by a test example described in the
ftredundancymgr/examples/ftr_appli directory.

254 Test 3
Application execution with redundancy management activated.

The nominal execution of a simple application has been tested by a test example described
in the ftredundancymgr/examples/ftr_appli directory.

255Test 4

Application dynamic reconfiguration

This test must achieve a dynamic reconfiguration on detection of anode failure.
This test has not been fully achieved yet.

2.5.6 Resultsand comments

Tests are still on going. At this stage, they are common to the two components.

The first facilities tested concern initialization procedures, nomina functionning and
termination over a distributed architecture.

The second range of tests concern the node failure detection and dynamic reconfiguration
process. This step isnot yet fully achieved.

The initidization of FT redundancy management is working and ftr_tasks are created
correctly, they execute then terminate after a given number of iterations.

FTR tasks are created, periodic behavior is insured, communication with FTR components
work.

However tuning of communication parameters using ORTE has till to be done, some

messages are lost in the current version. Change to the new version of OCERA should
permit a better control of communication and fix this problem.

2.6 Examples

A simple example is provided. It is intended to test the different points cited above and
related both to application initialization, event detection, behavior commutation and

OCERA 1ST 35102 32

application termination. Since there is no global example directory for Redundancy
Management, all installation and testing is done in the examples subdirectory located within
the ftredundancymgr component.

2.6.1 How to run the examples
Up to now, the examples devel oped are common to the two components.
The example directory islocated within the ftredundancymgr component :
ocer a/components/ft/ftredundancymgr/examples/ftr_appli
It isthe Makefile located within this directory that builds the test application. In order to run
the example it is necessary to compile and start the ftredundancy management facility

first.

Implementation :

The ft/ftredundancymgr/examples/ directory has the following structure:

exanpl es
! --- README
I --- I NSTALL
I --- Mkefile
I --- ftr_appli
! I--- README
! I--- I NSTALL
! I--- Makefile
! I--- include
! ! l---ftr_appli.h
! I--- src
! ! l---ftr_appli.c

The ftr_appli is a simple application that has been developed to test the ftredundancy
management facility.

The general OCERA Makefile file permits the compilation of the overall OCERA tree

provided options are selected in the configuration step (see OCERA HOWTO for OCERA
configuration steps). However examples can be compiled separately afterwards.

OCERA 1ST 35102 33

Compilation :
In order to compile the example please follow next steps :

- Go to the ft/ftredundancymngr/exanpl es directory:

$ cd ft/ftredundancymmgr/ exanpl es

- Cean the ft/ftredundancymngr/exanpl es directory:

$ nake clean

- Conpil e the exanpl es:

$ nake

Install ation/Execution :

Note that execution of examples requires a distributed architecture. So the ftcomponents and
examples must be present on each machine that will be involved in the test. This requires
additional operations and controls before the example can be run.

+ Instal OCERA (or at least ORTE and ftcomponents) on each machine.

+ Insure that rights are set so asto allow for remote execution of the code corresponding to
both components and application.

« Set up environment variables

(See section 2.7 for details)

The example runs on two nodes N1 and N2. The application has two tasks T1 and T2.

T1 master task is running on node N1 and T2 master task is running on Node2. Nodel is the
master node on application start.

To run the application one must :
+ start ftredundancy management

A shell script alowsfor this, it islocated in ft/ftredundancymngr/src:

$ ftrmstart <Nodel> <Node2>

where <Nodei > i s an host nane

It starts ORTEManager on each node, then starts ftredundancy components on
each node. Actually the two components of a node are linked a single Linux
executable named ft_redman.

The master node is the current node (it must be the same as the first argument
, here Nodel).

OCERA 1ST 35102 34

+ start application on master node
$ cd ftr_appli/src
$ /ftr_appli

The application starts first on Nodel then on Node2. Replicas are created and
ftr_tasks started.

After agiven number of cycles the application ends.

2.6.2 Description

Up to now, the examples devel oped are common to the two components.

Up to now , there is only one simple example provided. It runs on two nodes N1 and N2.
The application hastwo tasks T1 and T2.

T1 master task is running on node N1 and T2 master task is running on Node2. Nodel is the
master node on application start.

The main objective of this example is to test application registration, ftr_tasks and replicas
management, checkpointing and application termination.

2.6.3 Resultsand comments

The current implementation is still a prototype one. We have adopted an incremental
development cycle and some functionalities have till very basic implementation. The main
goal of this step was to provide a consistent overall framework for redundancy management.
A lot of work has still to be done to make an efficient operational environment of it.

However, the example has permitted to test the ft redundancy management overall
structure .

+ Ft redundancy framework set-up and functioning
- Application registration

« Application execution

+ Application termination.

The next step will cover

+ Node crash detection

- Application dynamic reconfiguration.

OCERA 1ST 35102 35

2.7 Installation instructions

The two FT Redundancy management components provided make part of the OCERA tree
under the ft branch. We don't detail here the subtrees corresponding to degraded mode
management and ftbuilder which are described in D6.2_rep.

The ft subtree contains the following directories and files

ft

I--- ftappnon (not detail ed here)
I--- ftcontroller (not detail ed here)
Iftbuilder (not detailed here)

I ftredundancyngr

! READVE

! | NSTALL

! Makefil e

! doc

! exanpl es

! ! READVE

! ! | NSTALL

! ! Makefil e

! ! ftr_appl

! ! READVE

! ! I NSTALL

! ! Makefile

I I i ncl ude

! ! I---ftr_appli.h
! ! src

! l---ftr_appli.c
! i ncl ude

! I---ft_redundancyngr.h

! l---ft _controller.h

! src

! I---ft_redundancyngr.c

! l---ft _controller.c

OCERA 1ST 35102 36

I
Iftreplicangr

! READVE

! | NSTALL

! Makefil e

! doc

! i ncl ude

! ! ft_replicangr.h
! src

! ! ft_replicangr.c

The general OCERA installation procedure compiles and installs the selected components.
In order to be able to use the Redundancy Management facility, at configuration, one must :

+ select Soft RT-LINUX in the OCERA configuration tool and select the
ft/ftredundancymgr and ft/ftreplicamgr components.

+ select ORTE in the communication components.
During this general installation procedure, al the components and examples are compiled.

The two ftredundancy components are compiled into one single executable named
ft_redman.

Remark:

As said in the 3.6 section, ftredundancy components have to be present on all the nodes of
the network devoted to applications. This means that the installation procedure must be done
on each node.

If one doesn't want to have full OCERA instalation on each node, it is possible to compile
only ft and ORTE components separately from OCERA.

ORTE installation

ORTE installation in Linux user's space is rather simple (see extract of readme below or
ORTE documentation for more details D7.2 or D7.4) .

untar installation package into desired directory, enter this
directory and issue foll ow ng conmands.

User Space conpil ation:

./l configure

nmake

make install

after this procedure ortenmanager and orteping are placed in

[fusr/1ocal/bin.

OCERA 1ST 35102 37

Ftredundancy componentsinstallation

For a separate testing of the FT components :
+ copy the ft subtree in the location you want,
+ change the ft/Makefile to restrict compilation to ftredundancymgr and ftreplicamgr

+ make

The ft/Makefile normally compiles and install all ftcomponents so you have to change it a
bit to restrict it to redundancy management asit is shown below.

1. Change the SUBDIRSline

SUBDI RS = ftappnon ftcontroller ftbuil der ftredundancyngr
ftreplicangr

to the following
SUBDI RS = ftredundancyngr ftreplicangr
2. Comment out the ocera related stuff

ifneq ($(wildcard ../../ocera.nk),)
include ../../ocera.nk

el se

all:

@cho -e "You should go to the oceral/ directory
and do 'nake' to generate the ocera.nk file
first.\nThanks."

endi f

which becomes

#i fneq ($(wildcard ../../ocera.nk),)
#include ../../ocera. nk

#el se

#al | :

@cho -e "You should go to the oceral/ directory
#and do 'make' to generate the ocera.nk file
#first.\nThanks."

#endi f

Installation

The normal installation process is done through OCERA config tool. We have not defined a
particular installation process yet, so executable code is located within
ft/ftredundancymgr/sr ¢ and ft/ftredundancymgr/examples/ftr_appli/src

So you have to define an environment variable named FT_RM_BIN_DIR and copy
ft redman executable and ftrm start script in it or let $FT_RM_BIN_DIR be
ft/ftredundancymgr/src.

OCERA 1ST 35102 38

Chapter 3. ftreplicamgr component

3.1 Summary

Name : ftreplicamgr
Description : ftreplicamgr aong with ftredundancymgr are two complemetary
components that provide transparent redundancy management for real-time applications.
Redundancy policy implemented is based on a passive replication model. The
ftredundancymgr is in charge of globa application and network initialization and
control (including node crash detection). The ftreplicamgr is in charge of tasks level
control: tasks groups and tasks replicas management, checkpointing.
Author (name and email) :

A. Lanusse (agnes.lanusse@cea.fr)

P. Vanuxeem (patrick.vanuxeem@cea.fr)
Reviewer :
Layer : Linux Level.
Version: V0.1
Status : design

Dependencies . ocera V1.0 requires ORTE component and ftredundancymgr
component

Release date: M2

3.2 Description

The ftreplicamgr component is in charge of monitoring local tasks execution and
maintaining groups of replicas consistency. Itsroleisthusto :

monitor the tasks running on the node (and detects deadline miss on tasks),
perform periodic checkpointing of tasks contexts and shared data.
maintain groups of replicas status

maintain databases related to tasks contexts and shared data.

As ftredundancygr, the ftreplicamgr must be present on each node of the configuration
and must always be associated with the ftredundancy component. They must be started
before the application. A script helps starting the two components on a set of nodes.

OCERA 1ST 35102 39

3.2.1 Ftreplicamgr internal description.

The ftreplicamgr component consists of severa threads : one main controlling thread
insures global group management of tasks located on the node, it cooperates with
specialized threads dedicated to checkpointing and error detection at task level. A watchdog
thread detects deadline misses.

Node i

Redundancy M anagement Faclity

ftreplicamgr

tasks_groups_tab tasks_control_tab

ftr_tasks_groups_manager \ i /
' B tasks_shared data_tab

tasks_contexts _tab

| task_ Y . |checkpoint
' fault_ % watchdog ™®_manager
detector
| ft replica agr / appli/ft_replicam gr Api ft_replicamgr /ft_replicamgr Api
ft_redund ncymgr Replica management

A)i

Global Application & Network control

Figure 3.1 ftreplicamgr: internal view

This component maintains several databases and propagates data to other ftreplicamgrs
when changes related to alocal master task occur.

Local databases are:

+ tasks groups_tab which contains the description of each group of tasks replicas.

+ tasks control_tab which contains information on the current status of each task (state
(i.e. created, running, ended), master/slave, start cycle time, deadline cycle time,
cycle period,...),

+ tasks contexts tab which contains the current ftr_task _context for each task.

+ tasks shared_data tab which contains the current valid values (read/write) for each
shared data.

OCERA 1ST 35102 40

The checkpoint manager receives periodically :

+ new context

+ new shared data values

at the end of each local master task cycle.

It then propagates these new values to other members of the group.

It also receives periodically in the same manner, new values for dave local tasks replicas. It
then updates its local copy of these data.

In pardlel, the checkpoint manager arms a timer corresponding to each deadline of passive
replicas. If this deadline is reached while no context has been received, a specific connexion
check is performed. If network is functioning correctly, the replica manager informs the
redundancy manager that collects information from other nodes and will decide to change
the active replica if possible. The watchdog thread is in charge of detecting such possible
deadline miss for reception of new context values from application or from other
ftreplicamgrs.

A timer isarmed on starting a new cycle and reset each time information is received on time
by the checkpoint manager. If timeout occurs before, a notification is issued to task
fault_detector which then propagates it to the ft tasks group manager and to
ftredundancymagr.

OCERA 1ST 35102 41

3.3 API / Compatibility

This component uses POSIX Linux APl for threads manipulation. A few additional
primitives have been defined to handle redundancy management.

Asit isthe case for the ftredundancymgr, this API can be divided into three subsets.

an APl for communication between application (ftr_controller) and ftrundancymagr
(ftr_controller/ftrep API).

an APl for communication between ftreplicamgr and ftredundancymgr (ftrep/ftred
API) located on different nodes,

an API for communication between the ftreplicamgrs (ftrep/ftrep API),

ftr_controller/ftrep
ftr_notify_appli_task_created()
ftr_notify_appli_task_cycle started()
ftr_notify_appli_task_cycle finished()
ftr_notify_appli_task ended()

ftr_task_context_commit()
ftr_task_context_update()
ftr_shared data commit()
ftr_shared data update()

ftrep/ftred
ftr_task_group _add member()
ftr_task_group_remove_member()
ftr_task_group_modify _member_attributes()

ftr_notify_task_failed()

ftrep/ftrep

ftr_task_checkpoint()
ftr_ftreplicamgr_heartbeat()

OCERA 1ST 35102 42

3.3.1 API between ftr_controller and ftreplicamgr (ftr_controller /
ftrep API)

ftr_notify_appli_task_created

paraneters :

in:
ftr_appli_task_nane
ftr_appli_id
Description :

Used by the ftr controller thread in the user's process to
communicate with the ftreplicamgr and signal the creation of a
ftr task. The result gives the ID and the type of replica (master
or slave) behavior to adopt for this instance. The type is
determined using the group configuration for this task.

Pr ot ot ype :
extern FTR_TASK REPLICA ID ftr_notify_appli_task_created
(FTR _APPLI TASK NAME,
FTR_APPLI _I D);

ftr_notify_appli_task cycle_started

paraneters :

in:
ftr _task replica_id
i ssue_nunber

dat e

Description :

Used by the ftr controller thread in the user's process to
communicate with the ftreplicamgr and signal the start of an
execution cycle of the ftr task replica.

Pr ot ot ype :
extern int ftr_notify_appli_task_cycle_started
(FTR_TASK_REPLI CA | D,
int,

Nt pTi me) ;

OCERA 1ST 35102 43

ftr_notify_ appli_task _cycle_finished

paraneters :

in:
ftr _ task replica_id
i ssue_nunber
date

Description :

Used by the ftr controller thread in the user's process to
communicate with the ftreplicamgr and signal the end of an
execution cycle of the ftr task replica.

Pr ot ot ype
extern int ftr_notify_appli_task_cycle_finished
(FTR_TASK REPLI CA I D,
int,

Nt pTi ne) ;

ftr_notify_appli_task_ended

paraneters :

in:
ftr_task replica_id
i ssue_nunber
date

Description :

Used by the ftr controller thread in the user's process to
communicate with the ftreplicamgr and signal the end of a ftr task.

Pr ot ot ype
extern int ftr_notify appli_task cycle started
(FTR_TASK_REPLI CA | D,
int,

Nt pTi ne) ;

OCERA 1ST 35102 44

ftr_task _context conmnmt

paraneters

in:
ftr_task replica_id
ftr _context id
i ssue_nunber
date
Description :

Used by the ftr controller thread in the user's process to
communicate with the ftreplicamgr and commit the new context of a
master task replica at the end of an execution cycle.

Pr ot ot ype
extern int ftr_notify_appli_task_cycle_started
(FTR_TASK_REPLI CA | D,
FTR_TASK_CONTEXT I D,
int,

Nt pTi ne) ;

ftr_task _context _update

paraneters

in:
ftr_task replica_id
ftr_context_id
i ssue_nunber
dat e
Description :

Used by the ftr controller thread in the user's process to get the
new value of a ftr task context before each beginning of cycle.
(For a master task, the value is already set, for a slave task, the
context is read from the local value stored on ftreplicamgr).

OCERA 1ST 35102 45

Pr ot ot ype
extern int ftr_task context _update
(FTR_TASK_REPLI CA | D,
FTR_TASK_CONTEXT | D,
int,

Nt pTi ne) ;

ftr_shared _data _comm t

paraneters :

in:
ftr_task_replica_id
ftr _shared data_id
i ssue_nunber
date

Description :

Used by the ftr controller thread in the user's process to
propagate the new value of a ftr shared data whose ftr task is
writer. This is done at each end of cycle and propagated to all
ftreplicamgrs.

Pr ot ot ype
extern int ftr_shared _data conmit
(FTR_TASK_REPLI CA | D,
FTR_SHARED DATA | D,
int,

Nt pTi me) ;

ftr_shared_data_update

paranmeters :

in:
ftr _task replica_id
ftr_shared data_id

i ssue_nunber

OCERA 1ST 35102

46

dat e

Description :

Used by the ftr controller thread in the user's process to get the
new value of a ftr shared data before each beginning of cycle. (For
a master writer task, the value is already set, for a slave task,
or a master reader task the context is read from the local value
stored on ftreplicamgr) .

Pr ot ot ype
extern int ftr_shared_data update
(FTR_TASK_REPLI CA | D,
FTR_SHARED DATA | D,
int,

Nt pTi ne) ;

3.3.2 API between ftreplicamgr and ftredundancymgr (ftrep/ftred
API)

ftr_task_group_add_nenber

paraneters :

in:
ftr_task group_id
ftr task id
Description :

Used by the ftreplicamgr to add information related to a replica
that just started to the ftr task group.

Pr ot ot ype
extern int ftr_task group_add_nenber (FTR_TASK GROUP_I D
FTR_TASK | D);

ftr_task_group _renove_ nenber
paraneters :
in :

ftr task id

OCERA 1ST 35102 47

ftr_task_replica_desc

ftr_task group_id

Description :

Used by the ftreplicamgr to remove information related to a replica
that just ended to the ftr task group. The replica is not available
any more.

Pr ot otype :
extern int ftr_task_group_renove_menber (FTR_TASK GROUP_I D,
FTR TASK I D);

ftr_task_group_nodi fy_menber_attributes

paraneters :

in:
ftr_task _group_id
ftr _task group_id
ftr_task_replica_desc
Description :

Used by the ftreplicamgr to update information related to a replica
to the ftr task group.

Pr ot ot ype :

extern int ftr_task_group_nodify_menber (FTR_TASK GROUP_I D,
FTR _TASK_I D,
FTR TASK REPLI CA DESC);

OCERA 1ST 35102 48

ftr_notify_task_failed

paraneters :

in:
ftreplicamgr_Id
ftr_task_ld
ftr_node_Id
i ssue_numnber
dat e

Description :

Used by the ftreplicangr to notify a deadline mss on a task
iteration cycle. This detection is followed by a reconfiguration
phase and a call to ftr_application _config nodify for each

appl i cation.

Pr ot otype :

extern int ftr_notify_task failed(FTR_.RED MGR I D,
FTR_TASK_I D,
FTR_NODE_|I D,
int,
Nt pTi ne) ;

OCERA 1ST 35102 49

3.3.3 API between ftreplicamgrs (ftrepl/ftrepl API)

ftr_task_checkpoi nt

paraneters :

in:
ftr task id
ftr_appli_id
i teration_nunber
date
Description :

Used by the ftreplicangr to broadcast a new context and shared

data (in witer node) values at the end of a master task replica.

Pr ot ot ype

extern int ftr_task_checkpoint(FTR_TASK I D,
FTR _APPLI I D,
int,

Nt pTi ne) ;

ftr_ftreplicangr_heart beat
paranmeters :
in: ftreplicangr_Id
i teration_nunber
date
Description :
Used by the ftreplicangr to signal its liveliness to the system

periodic signal is sent on the network and received by all the
ftredundancyngrs.

Pr ot ot ype
extern int ftr_ftreplicangr_heartbeat(FTR_RED M3R I D,
int,

Nt pTi me) ;

OCERA 1ST 35102

50

3.4 Implementation issues

+ Modifications to the existing RTLinux or Linux code
This component isanew one, there is no modification to existing Linux component.

- Datastructures created.

Main data structures created concern :
« ftr_task _replica desc,
+ ftr_task_group.
« ftr_shared data,

« ftr_task_context,

Datatables are:
« ftr_tasks control_tab
ftr_tasks groups tab,
« ftr_tasks contexts tab,

ftr_tasks shared data tab,

Control events defined are:

ftr_replica_control_event

Structures

typedef struct

OCERA 1ST 35102

char appl i _name[NAME_MAX_LENGTH] ;
char appli _task_name[NAVE_VMAX LENGTH] ;
FTR APPLI _TASK I D appli_task_ id;
FTR_SCHEDULI NG_PARAMETERS *schedul i ng_par anet er s;
FTR_REDUNDANCY_PARAMETERS *redundancy_par anet er s;
FTR_TASK_REPLI CA_STATUS replica_stat us;
FTR LOCATION replica_ | ocati on;
FTR_TASK CONTEXT *cont ext ;
FTR_SHARED DATA *W shar ed_dat a;
FTR_SHARED DATA *R shared_dat a;
} FTR_TASK_REPLI CA DESC ;

typedef struct
{
char group_name[NAME_MAX _LENGTH] ;
char appli _task_nane[NAME_MAX_LENGTH] ;
FTR_APPLI _TASK I D nmaster_task_id;
FTR _LOCATI ON mast er _task_| ocation;
FTR_TASK CONTEXT *cont ext;
FTR_SHARED DATA *W shar ed_dat a;
FTR_SHARED DATA *R shared_dat a;
FTR_TASK_REPLI CA DESC replicas_tab[NB_MAX_REPLI CAS] ;
} FTR_TASK_GROUP_DESC ;

t ypedef struct
{
FTR_TASK I D writer_task;
FTR_DATA _STRUCT publ i shed_dat a;
FTR_DATA STRUCT pri vat e_dat a;
int current_valid_version_nunber;
} FTR_SHARED DATA ;

typedef struct

{
FTR TASK I D writer task;

OCERA 1ST 35102

52

FTR_DATA STRUCT publ i shed_dat a;

FTR_DATA STRUCT private_dat a;

int current_valid_version_nunber;
} FTR_CONTEXT ;

Tables:

The FT R Nodes table:

FTR TASK GROUP_DESC ftr_groups_t ab[FTR TASKS MAX] ;

The FT R Tasks Control Table:

FTR TASK REPLI CA DESC ftr_tasks control tab
[FTR_TASKS MAX] ;

The FT R Shared Data Table:

FTR_SHARED DATA ftr_tasks_shared_data_t ab] FTR_TASKS MAX] ;

The FT R Contexts Table :

FTR_CONTEXT ftr_tasks_contexts_tab[] FTR_ TASKS MAX] ;

New types defined to describe status of various entities:

typedef enum FTR_TASK REPLI CA STATUS {
FTR _TASK_REPLI CA STATUS NOT_DEFI NED,
FTR_MASTER,
FTR_SLAVE,
FTR_TERM NATED

} FTR_TASK REPLICA STATUS;

OCERA 1ST 35102 53

New types defined to describe control events:

typedef enum
{
FTR TASK NOP,
FTR_TASK REPLICA CREATION REQUIRED,
FTR TASK REPLICA TERMINATION REQUIRED,
FTR_TASK REPLICA CYCLE STARTED,
FTR_TASK REPLICA CYCLE ENDED,

} FTR_TASK REPLICA CONTROL_ EVENT;

3.5 Testsand validation

3.5.1Validation criteria
In afirst stage validation criteria concern purely functiona qualitative criteria.

Verification that in absence of abnormal situation the application runs
normally.

Verification that checkpointing works properly.
Verification that faulty events (deadline miss are detected)

Verification that the propagation of an abnormal event to the
ftredundancymgr is achieved correctly.

Verification that afaulty task commutes correctly to another replica

In a second stage, we will verify synchronization issues.

Verification that the replacement replica activation is achieved at the right
time (next activation period of the previous running task)

In athird stage, if possible, performance issues will be targetted

Verification that commutation times satisfy minimum period requirement
from the application.

OCERA 1ST 35102 54

352Test 1
Management of task periodic context and shared data checkpointing

In thistest, the periodic checkpointing (of context and shared data) is performed.

353Test 2

Detection of abnormal event (deadline miss on task_cycle end).
The principle of deadline miss event detection is being tested.

Each time a cycle starts, a notification is received by the ftreplicamgr with the expected
deadline. A timer is armed with this deadline and reset on reception of end of cycle
notification. If timeout is reached before, a deadline miss is detected and the
ftrdeundancymgr is notified of the event. This latter then decides if the faulty task is
replaced by one of itsreplicas.

This mechanism is still under testing.

3.5.4 Resultsand comments

Thetesting processis still on going.

Up to now, we have tested the basic communication mechanisms between the components
involved in Fault-Tolerance redundancy management and the functioning of basic
commutation mechanisms.

This has permitted to set up a global FT framework. The principles of initialization, event

detection, commutation and termination have been settled but a lot of work has still to be
done.

3.6 Examples

Since there is no global example directory for Redundancy Management, al installation and
testing is done in the examples subdirectory located within the ftredundancymagr
component so for further details related to the next sections please refer to the 2.6 Section.

3.6.1 How torun the examples

Up to now, the examples developed are common to the two components, please refer to the
ftredundancyr examples section.

The example directory islocated within the ftredundancymgr component :

ocera/components/ft/ftredundancymgr/examples/ftr_appli

3.6.2 Description

Please refer to section 2.6.2

3.6.3 Resultsand comments
Please refer to section 2.6.3

OCERA 1ST 35102 55

3.7 Installation instructions

Please refer to 2.7

OCERA 1ST 35102

56

