
WP6 - Fault-Tolerance Components

Deliverable D6.3 - Design of new fault-
tolerance facilities

WP6 - Fault-tolerance components : Deliverable 6.3 - Design of fault-tolerant components
New functionalities by A. Lanusse

Published July 2003
Copyright © 2003 by OCERA Consortium

Table of Contents
Chapter 1. Introduction ..5

1.1. Main objectives...5
1.2. Current development status ...6
1.3. New FT functionalities for version V2...8

Chapter 2. Redundancy management in OCERA : main principles.....................................10
2.1. Design choices for redundancy management..10
2.2. Redundancy management model..11

Chapter 3. Fault-tolerance components architecture V2..13
3.1. Run-time components for redundancy mode management......................................13

3.1.1. Architecture overview...13
3.1.2. Basic interactions between components...14
3.1.3. Synchronization principles..16
3.1.4. Task context..17

Chapter 4. FTRedundancy manager...18
4.1. Description..18
4.2. Layer...18
4.3. API / Compatibility..18

4.3.1. The inter ftredundancymngr API (ftred/ftred API)...19
4.3.2. API between ftredundancy mngr and ftreplicamngr (ftred/ftrepl API).............20

Chapter 5. FT replica manager...22
5.1. Description..22
5.2. Layer...22
5.3. API / Compatibility...22

5.3.1. API between ftreplicamngrs ftrepl/ftrepl API...23
5.3.2. API between ftreplicamngr and ftredundancymngr (ftrep/ftred API)...............24

Chapter 6. Ftbuilber..25
6.1. Description..25
6.2. Layer...25
6.3. API / Compatibility...25

OCERA IST 35102 iii

Document Presentation

Project Coordinator

Organisation:UPVLC
Responsible person:Alfons Crespo

Address:Camino Vera, 14, 46022 Valencia, Spain
Phone:+34 963877576

Fax:+34 963877576
Email:alfons@disca.upv.es

Participant List

Role Id. Participant Name Acronym Country
CO 1 Universidad Politecnica de Valencia UPVLC E
CR 2 Scuola Superiore Santa Anna SSSA I
CR 3 Czech Technical University in Prague CTU CZ
CR 4 CEA/DRT/LIST/DTSI CEA FR
CR 5 Unicontrols UC CZ
CR 6 MNIS MNIS FR
CR 7 Visual Tools S.A. VT E

Document version

Release Date Reason of change
1_0 20/02/2003 First release

OCERA IST 35102 iv

Chapter 1. Introduction

Fault-tolerance has been largely studied in the past twenty years and a rich background
exists in that domain. However, if general principles are well known and generic
mechanisms have been described very well in the litterature, very few have been made
available within open source community. The goal of the fault-tolerance work package in
OCERA is precisely to bring to the open source community basic functionalities useful for
user's willing to improve applications robustness.

The main objective of the fault-tolerant work-package in OCERA is to provide two types of
facilities : degraded mode management in mono-node applications and redundancy
management in distributed applications. During the first phase of the project, the basic
fault-tolerant facilities have been settled. During the second phase. New facilities will be
added. These new facilities will mainly concern the implementation of redundancy
management

1.1. Main objectives

As specified in D6.1 report, the main objective of the fault-tolerant work-package in
OCERA is to provide two types of facilities : degraded mode management in mono-node
applications and redundancy management in distributed applications.

The development of the fault-tolerant facilities has been decomposed into two major classes
and will follow the roadmap presented in figure 1:

•

Mono-node applications.

In this context fault-tolerance consists in providing facilities for handling two types
of abnormal situations : deadline miss for hard-real-time tasks and task abortion.
The first range of facilities has been implemented. Tow components, the ftappmon
and the ftcontroller implement degraded mode management respecively at the
application and task level.
The second range of facilities will cover recovery blocks management and imprecise
computation management. These functionalities will be developed within the second
phase of the project.

•

Distributed architectures.

In this context, we will provide support for redundancy management in multi-node
architectures. These developments will exploit the communication components
developed within OCERA during the first phase of the project. These new facilities
will permit to handle a new type of abnormal situations (nodes failure).

The dispatching of these developments over the time of the project is summarized in fig.1.

OCERA IST 35102 5

Figure 1. OCERA targeted fault-tolerant facilities

1.2. Current development status

The first stage of the development has consisted in defining an overall fault-tolerant
framework well integrated in the RTLinux architecture and two basic FT run-time
components. Then a design/build tool has been developed to support the methodology and
assist the user to specify its application.

run-time components
Two specific run-time fault_tolerance components have been developed (ftappmon and
ftcontroller) as said above. They provide degraded mode management for applications
consisting of hard real_time RT Linux tasks. They are described in document D6.2_rep.

These two components support the notion of FT_task (Fault-tolerant task) an encapsulation
of Real-Time task that permit to handle abnormal situations in a smooth and controlled
way.
Thanks to predefined alternate behaviors for a FT_task, the service offered by this task can
be pursued (even if degraded) in spite of faulty events occurring on the task. Actually the
task is implemented through several threads that run alternately. The detailed principles of
this computation model have been described in previous documents (see D6.1 and
D6.2_rep).

The events currently handled by the implementation are KILL on threads. This
implementation uses the Ptrace component developed within OCERA in workpackage
(WP5). Kill events are periodically checked by the ftcontroller which triggers a task
behavior switch and notify the ftappmon that may in turn trigger an application mode
change.
Detection of deadline misses is still under development since it requires the use of
components developed during the first stage of the project within the scheduling
workpackage (PosixTimers and Application Defined Scheduler).

The current implementation offers the advantage of being independant from the kernel code
itself and developmentscan be done in parallel without deep inter-relation between the two
types of components. This will facilitate the maintainability of the overall system.

The fault-tolerance management offered within WP6 is based on the exploitation of

OCERA IST 35102 6

declarative information about the application provided by the user. While the actual
application code is almost left the same as for a pure real-time RTLinux application,
additional information is required at init time in order to instanciate tables used by the run-
time FT components to manage properly abnormal situations. This provides orthogonality
between fonctional and non functional features of an application. This way fault-tolerant
features or even real-time features can be declared separately from the code which permits
easily to test several combinations of parameters without having to rewrite the application
(or modify it) each time.

This declarative approach is supported by the introduction of a small number of primitives
used to specify these features and init the internal databases of FT components (see rep.
D6.2_rep). But the full description of the application using such primitives can easily
become fastidious and error prone. It is the reason why a design tool component is required.

off_line design component

A first prototype of design/build tool, the ftbuilder component has been implemented. It
permits the description of the application tasks and modes and the specification of
transitions conditions. Information gathered with the tool is then used to generate
application description files used to compile application. The two currently generated files
namely the ft_appli_control_model.h and ft_appli_control_model.c are used respectively
to declare tasks, modes and transitions and to init databases using specific API primitives.
Moreover, the ftbuilder permits to check the consistency of tasks and modes declarations.

Figure 2 . Declarative approach and supporting tools

The specification tool permits the user to specify for each task the related temporal
constraints, the different possible alternative behaviours and the transition conditions for
switching behaviour. It also describes application modes and transition conditions for
application mode switch. The modelling of the application relies on the generic task model
described in document D6.1. The development of this component is still undergoing but a
first prototype version is available in the ocera archive. A detailed description of the tool
will be provided within a revised version of D6.2_rep that will be delivered at the end of
September.

OCERA IST 35102 7

1.3. New FT functionalities for version V2

Next developments leading to the second version (V2) will concern both the enrichment of
basic fault-tolerance strategies and the support for more complex application architectures.

Extensions to V1 components

Extensions to first components will be provided so as to handle both hard-realtime and soft
realtime tasks. They will concern three apsects :

•

Handling of both Hard real_time RTLinux level and Linux level tasks.

This will require that each of the previous fault-tolerant components be
redefined as two cooperating components located at the Linux application
level and at the application RTLinux level.

Moreover, this cooperation requires that bounded reaction time can be
guaranteed between the detection of an abnormal situation implying an
application mode change and the effective mode change activation by the
Linux application level ftappmon. The implementation of OCERA
components providing a hierarchized CBS scheduling is thus a prerequisite for
this step.

•

Higher level strategies of degraded mode management will be tested

Mainly recovery blocks and imprecise computation management.

•

Extensions do design/build tool

In the second phase of the project, the design tool will be enriched in order to
help define which tasks will be redunded and their level of redundancy. This
will imply also that deployment information is given in order to specify tasks
location over nodes. Extended code generation will also be provided to
support applications implementation and distribution management.

Development of new V2 components

In addition to that, specific new components will be added in order to provide new facilities
to handle redundancy management in distributed environments.

They will consist in : a fault-tolerant redundancy manager (ftredundancymngr) and a fault-
tolerant replica manager (ftreplicamngr). They will respectively control redundancy at the
application level and at the task level on each node.

They will be implemented both at Hard real-time and Linux level as shown in fig. 3 . They
are described in the next sections.

OCERA IST 35102 8

Figure 3 . Fault-tolerance components in OCERA architecture (V2)

OCERA IST 35102 9

Chapter 2. Redundancy management in
OCERA : main principles

Redundancy management is a very classical way of providing fault-tolerance to applications
(see state of the art on fault-tolerance in D3.3 report).

There are mainly three types of redundancy management currently used :

•

active redundancy model

•

passive redundancy model

•

semi-active redundancy model

The most well known and also most widely used model is the active M:N model where M
replicas of a same task run in parallel and a voting system validates the results as long as at
least N replicas are still valid.

In semi-active redundancy model replicated tasks run in parallel with the same interactions
inputs from other tasks or environment, but only one task is said to be active and can
propagate results and interact with other tasks. When the active task fails one of its replicas
take over the activeness. Since all the redundant tasks run the same code in parallel, the
replica context and state is immediately valid.

In the passive redundancy model, only one task is active and interacts with other tasks, other
replicas do not run, but the state of the active task is transmitted to replicas in order to
maintain global state consistency over an observability criteria.

2.1. Design choices for redundancy management

Within the OCERA project, we have chosen to implement the last redundancy model, that
its the passive model. This choice is driven by the fact that we are targetting real-time
embedded applications with restricted resources. This type of redundancy management
however implies that a deterministic synchronization mechanism insures state consistency
between replicas. The concept of replica context is then a very important notion.

In OCERA, the fault-tolerant model has been build in order to satisfy constraints of certain
classes of real-time applications where a large part of the tasks are periodic acquisition or
control tasks and where execution time of a task is relatively small regarding period. It is
thus possible to define a synchronization mechanism exploiting these characteristics which
are not necessary true for any kind of real-time applications but represent a large percentage
of real-time applications.

The model retained assumes that one period of execution of a task lost is not dramatic for
the application. The idea is that we can take as much as one period of a task to recover from
a failure. This assumption which may seem rather dangerous is coupled with a default
strategy implementation, that is that if a task must produce a given result at a given time
during a period, a default value will be provided if the task fails and a replacement
behaviour will take place for the next and further periods. When redundancy is
implemented, a replica will take over the failed task and will be ready for the next period.

This strategy give us some laxity to implement checkpointing mechanisms which are
generally time consuming and difficult to implement in a more general asynchronous

OCERA IST 35102 10

context.

2.2. Redundancy management model

Introducing redundancy consists in duplicating some or all the application tasks in order
to be able to maintain a quality of service in case of faults or failures.

If we consider software faults, redundancy may be achieved through source
diversification of code; that is multiple implementation of a same service through
different versions. This type of redundancy is not treated here.

When hardware failure or kernel crash is feared, hardware is redunded as well as network
and tasks code. This is this type of redundancy that will be tackled in the second phase of
the project. It is thus intrinsiquely a distributed system.

Redundancy model

 An application consists of a set of tasks.

 Each task may have several replicas (that constitutes a group)

 Replicas of a task are located on different nodes (only one replica of a given task
on a given node).

 A node is a computer plus an OCERA kernel

 Communication between nodes is deterministic (bounded communication time)

Types of faults handled

Two types of faults will be considered :

 kernel crash

 node or communication crash

The software failure of a task is handled by the mode change mechanism developed in
the first phase of the project and supported by the ftcontroller and the ftappmon. The
replica of such a failed task is not activated (but the mode change is propagated).

The two types of faults are fail silent failures. In both cases it can be detected by a
timeout. A typical way of handling this is to send periodically lifeness signals, that if not
received in time reveal a misfunctionning either of the distant node or of the
communication mean.

Byzantine errors are not considered within the scope of the project.

Application development using redundancy facilities

During design two important steps are followed :

•

first the specification of required redundancy is done for each task. Redundancy may
be required for some important tasks and not for other

•

then, the specification of deployment is done. The deployment consist in partitioning
the application into separate spaces that will be implemented onto separate machines.

These components rely on the communication components that insure deterministic and
reliable real_time communications.

Indeed, the specification of fault-tolerant tasks must be consistent with task dependencies

OCERA IST 35102 11

and location.

The general design process is illustrated hereunder in fig. 4.

Figuure 4. Specification to deployment of redundant application.

With information gathered during design, , the data bases of the redundancy components
included in the FT_layer will be instanciated.

The FT layer for redundancy insures several facilities :

•

It controls the state of the system and a notification mecanism is in charge of the
detection of node or network failure.

•

It insures the periodic update of tasks state of groups of redundant tasks.

•

It maintains the knowledge of current application configuration and is in charge of the
reconfiguration of redundancy in case of partial failure of the system. When a node
crashes, the redundant tasks that were active on the crashed node are replaced by one of
the remaining redundant tasks of the group. Application topology is updated, and state
recovery for crashed tasks is performed. The choice of the new active task is done
arbitrarily.

The two first functionalities are insured by the ftreplicamnger while the last one is insured
by the ftredundancymngr.

OCERA IST 35102 12

T2T1
T4 T3

T1T2

T1 T2

T1 T2T4 T3

T2T1 T4 T3

Redundancy required

Deployment
model

Com
layer

FT layer

Kernel layer

Appli layer

Com layer

FT layer

Kernel layer

Appli layer

Com layer

FT layer

Kernel layer

Appli layer

Chapter 3. Fault-tolerance components
architecture V2

3.1. Run-time components for redundancy mode management

3.1.1. Architecture overview
The redundancy management involves implementation at both Hard RT level and Linux
level

Figure 5 . FT architecture overview

The implementation of redundancy management requires two OCERA RTLinux
components located at the application level on each machine of the network.

 a Redundancy managar (ftredundancymngr) in charge of the global application
monitoring and redundancy policy for the groups of tasks controlled

 a Replica manager (ftreplicamngr) in charge of the low level control of the
checkpointing of tasks contexts and the monitoring of system state. It is this
component which also notify the ftredundancy manager of abnormal situations.

These two components cooperate, especially when situations evolves due to a kernel or a
node crash.

There is one instance of each component on each node of the network. The redundancy
managers on each machine has a complete knowledge of application current configuration
and constraints, so that it can take decisions in an autonomous way if necessary.

The replica manager maintains a table of all duplicated objects and the role of the current

OCERA IST 35102 13

instances located on the node. If the instance is a passive replica. The replica manager,
regularly checks that context checkpoint is performed. If the instance is an active replica, it
initiates the protocole for state context transfer. This protocole must insure reliable atomic
transfer to all memebers of the group of replicas.

3.1.2. Basic interactions between components
At init the FT redundancy manager set ups tables of configuration of the application.

The application is a set of FT_tasks. Some of them are requiring redundancy. The set of
replicas of a same task constitutes a group that will have to be managed. The FT redundancy
manager stores them along with the configuration of tasks (i.e. their location and their
belonging to a group).

The temporal characteristics of the tasks are also stored since synchronization of
checkpoints depends on these characteristics.

Then the FT redundancy manager determines the active redundant replicas. This is done on
on the main node.

Then the setup of the network is done and checked.

Then information is propagated to other replica managers other the network.

Each FT redundancy manager sets up then starts its local replica manager .

Fig. 6. Interactions at init and on normal situations

Once this is done, the system is ready to start the application. In this example two
redundanst tasks T1 and T2 are running. The active replica for T1 is on Node N1 while the

OCERA IST 35102 14

FtredmFtredm

Ftreplm

Ftredm

FtreplmFtreplm

T1a T1p1 T2a

T2p T2p T1p

3. Checkpointing from active task to passive replicas

1. Init : configuration of Ftredm on each node

2. Init : configuration of Ftreplm locally

1

2

33

4. Lifeliness control

4 4

N1 N2 N3

active replica for T2 is on node N3.

This initialization step of the overall infrastructure, must be carefully designed and a
specific protocole is being defined to control it properly.

Once the application is running, the two components almost do not interact except for a
lifeliness notification periodically done in order to verify that the other component is still
alive.

The FT replica manager reguraly insures checkpointing between replicas for all the
replicas present on the node. It also monitors the availability of the network and the
lifeliness of distant connected nodes.

If a node crashes, notification is made by the Ftreplicamngr or diectly detected by the
ftredundancymngr and tasks reconfiguration takes place. The ftredundancymngrs installed
on the surviving nodes agree on new actives replicas and reset control data of the
ftreplicamngr.

Fig.7 Interactions on node crash

The crash is detected either by ftreplicamangr by a deadline on checkpointing or by the
lifeliness management in ftredundancy managers. The redundancy managers check the
configuration of tasks located on crashed node and update their group database. Then they
agree on a new active replica for each active task previously present on the faulty node.

Finally they update information of ftreplicamngrs so that groups definition is accurateand
active tasks are specified.

The ftreplicamngr can then switch passive tasks to active and refresh diffusion lists of
context for a given task.

In the example above , the replica of T2 located on N2 becomes active and application
continue with two nodes and only one passive replica for each task..

OCERA IST 35102 15

FtredmFtredm

FtreplmFtreplm

T1a T1p1

T2p T2a

2

3

4

N1 N2 N3

Interactions with other FTcomponents.

The ft appmon and the ftcontroller also reside on each node. The ftappmon has a global
view of application and application modes. It is replicated on each node.

The ftcontroller is in charge of controlling the whealthiness of the tasks threads of the
system. When a thread crashes, this is handled through task behaviour switch and not by the
take over of a replica. A degraded mode is activated, and this behaviour change is notified to
other replicas at checkpointing time. The replicas will also change their behaviour.

3.1.3. Synchronization principles
Synchronization is the main point as far as replica management is considered. Most critical
systems are based on time_triggered d eterministic synchronization model. A purs
asynchronous model is eligible on applications such as telecom or networks where time
determinism is not so important. However in this case it implies more complex algorithms to
insure deterministc atomic broadcast.

In our model we are between those two extremes . The periodical model gives us a bounded
synchronization network. Replica take over can only occur at the period following the
failure of tha active replica. Checkpointing is performed after the end of the execution of the
current iteration of the task and befor the next period.

Detection of node crash is done trhough a mechanism of watchdog implmented in the
replica manager.

As said in document D6.1, tasks will be considered as periodic.

Two classes of tasks have been identified.

 Simple periodic tasks that are activated by a timing event each new period and
execute sequentially a set of actions then wait for the next period. These are
representative of usual acquisition or servoing tasks.

 Controlling tasks that periodically receive data , perform computation and send
control data. These are also periodic tasks, they perform each cycle a set of actions
but they can also receive aperiodic requests and react to them during their period.

In this schema simple tasks do not interact with each other; they interact with a controlling
task. Several simple tasks may interact with a unique controlling task, however, they use
different communication entities (one to one communication). Shared resources are only of
the type one producer - one consumer.

Periods values are defined in such a way that consistency can be insured between
controlling and simple tasks (usually a same period).

In these conditions, an abnormal event occurring during a period will be taken into account
during the period and induce reconfiguration of impacted tasks so that the new configuration
can be made operational for the next period. Default strategies will be defined so that the

OCERA IST 35102 16

impact of an error during one period can be tolerated.

This blackbox view of tasks is however limited, in the future we intend to extend the fault-
tolerance facilities to more detailed tasks models. This will require the description of the
body of tasks in terms of actions such as call action, communication action (send, receive,
read, write) etc… This will permit to specify possible breakpoints in the code and model
tasks behaviours in a more accurate way allowing a finer management of error recovering.

3.1.4. Task context
As said earlier the passive replica management relies on the principle that there is an active
replica that runs on one node and that this active replica synchronize with other replicas in
order to maintain a consistent context so that if a replica has to take over the leadership on
failure it can do it starting from a consistent and up-to-date context.

In our model we have made the choice to guarranty that observable state of a task is
consistent.An observale state is a state reached at the end of the execution of an instance of
a periodic task. The internal intermediate evolution of local variables is not considered.
Thus the state is constituted of the set of values of its global variables.

Communication between tasks is supposed to be performed at the end of the excution of the
instance of the task. During an execution the task possibly uses results from other tasks
produced during previous periods. This model though asynchronous is close to time-
triggered approaches.

OCERA IST 35102 17

Chapter 4. FTRedundancy manager

4.1. Description

The ftredundancy manager component consists of one controlling thread and two
databases.
A database, the AppliControl Database stores information on replicas groups. This database
stores the location of each replica of a group.
The other one stores the system configuration satus (nodes and status of nodes and the
identifiers of distant replica managers)

Figure 8 . ftredundancymngr internal view

The main role of the redundancy manager is achieved during init, it sets up the system
infrastructure and installs and configure the ft replica manager. During execution its role is
less active. It reacts to node crash by defining the next active replica for a replicas group. As
said above, it also notify its wealthiness periodically.

4.2. Layer

This component is located at the Application RTLinux Level.

4.3. API / Compatibility

This component uses posix compatible RTLinux API for threads manipulation and OCERA
components API (ptrace, psignals, ptimers, pbarriers, appsched).

It also uses WP7 communication components that will ensure predictability of
communication.

The API can b e divided into two subsets. An API for communication b etween
ftredundancymngrs (ftred/ftred API) located on different nodes and an API for
communications with the ftreplicamngr(FTred/ftrep API).

This API will be refined during the detailed design of the component.

OCERA IST 35102 18

Ftredundancymngr

RedMan
AppliControl
Database

RedMan
Status
DataBase Redm/Repl

 API

R
edm

/R
edm

 A
PI

4.3.1. The inter ftredundancymngr API (ftred/ftred API)
ft_set_init_ControlDataBase

parameters :

in :

ftredundancymngrId

Description:

Used by the ftrepalicamngr to setup the Contro DataBase

ft_notify_I_am_alive

parameters :

in : ftreplicamngr_Id

 date

Description :

Used by the ftredundancymngr to control liveliness of the system. Periodic
signal sent

ft_update_ControlDataBase

 parameters :

in : DataStructure

Description :

allows database update

ft_notify_node_crash

parameters :

in :

 nodeId

 ftreplicamngr_Id

Description :

Used by the ftredundancymngr to notify a node crash

OCERA IST 35102 19

ft_notify_node_started

parameters :

in :

node_Id

ftreplicamngr_Id

Description :

Used by the scheduler to notify an error. Actually this should rather be a
signal. If not, the scheduler must set a high priority to ftcontroller
after this call.

4.3.2. API between ftredundancy mngr and ftreplicamngr (ftred/
ftrepl API)
ft_init_ft_task_group

parameters :

in :

task_group structure

Description :

Used by the ftreplicamngr instanciate internal DataBase of ftreplicamngr.
This call sets the group configuration for a FT_redunadnt_task. It
specifies the members of the group and their location and their current
activity status(active or passive).

ft_switch_ft_task_group_config // Init of task

parameters :

in :

task_group structure

Description :

Used internally by the ftreplicamangr to change active and passive
configurations of replicas.

ft_set_task_activity_status

parameters :

in :

taskActivityStatus

Description :

Used internally by the ftreplicamangr to set the task_status.

OCERA IST 35102 20

The task status tells if a task is an active or a passive replica.

ft_get_task_activity_status

parameters :

in :

task_Id

out :

taskActivityStatus

Description :

Used get the task activity Status.

OCERA IST 35102 21

Chapter 5. FT replica manager

5.1. Description

The ftrepliacamngr component consists of one controlling thread, a data base for replica
control management, this database is separated int two parts : one for the local active
replicas and one for local passive replicas. This DataBase contains information on active
replicas temporal application and context.

Figure 9 . ftreplicamanager: internal view

The ReplicaGroups Database is used to specify groups characteristics members , location
and active or passive status.

At each end of a periodic execution, the ending replica awakes the replica manager that will
transmit the new context to other members of the group.

In parallel, the replica manager arms a timer corresponding to each deadline of passive
replicas. If this deadline is reached while no context has been received, a specific
connexion check is performed. If network is functionning correctly, the replica manager
informs the redundancy manager that collects information from other nodes and will decide
to change the active replica if possible.

Finally, the replica manager surveys the status of the network and notify the
ftredundancymngr in case of pbs.

5.2. Layer

This component is located at the Application RTLinux Level.

5.3. API / Compatibility

This component uses POSIX compatible RTLinux API for threads manipulation. A few
additional primitives have been defined.

OCERA IST 35102 22

ftreplicamngr

ReplicaControl
Database

ReplicaGroups
DataBase

R
eplA

PI

RedmAPI

As it is the case for the ftredundancymngr, this API can be divided into two subsets. An API
for communication between ftreplicamngmngrs (ftrepl/ftrepl API) located on different
nodes and an API for communications with the ftredundancymngr(FTrepl/ftredAPI)

5.3.1. API between ftreplicamngrs ftrepl/ftrepl API

ft_task_new_context

parameters :

in

task_name

context struture

date

out

Description :

Used to send a new context at the end of active replica task execution

OCERA IST 35102 23

5.3.2. API between ftreplicamngr and ftredundancymngr (ftrep/
ftred API)

ft_notify_failed_node

parameters :

in

node_id

Description :

Informs the ftredundancymngr that a failed node has been detected(failure
can be detected at both levels).

ft_notify_replicamngr_ready

parameters :

in

Description :

Is used to inform the ftredundancymngr that the replicamngr is ready to
start working.

OCERA IST 35102 24

Chapter 6. Ftbuilber

6.1. Description

The ftbuilder is an off/line tool. As said in the general philosophy section, it will help the
user specify the non-functional features of its application in a declarative way. This tool will
thus help gathering information about application and fault-tolerant tasks and help build and
instantiate the data structures needed for run-time management of fault-tolerance. It will be a
simple TCL/TK tool used to enter textual information that will produce files related to tasks.

This information will possibly be used also for off-line analysis by verification components
developed by CTU.

A first prototype version has been implemented and is used to enter tasks, modes and mode
transitions specifications.

6.2. Layer

The tool is at Linux application level.

6.3. API / Compatibility

The tool uses TCL/TK.

OCERA IST 35102 25

OCERA IST 35102 26

