
WP3 - Market Analysis

Deliverable D3.1 - Feedback from RTOS
users

WP3 - Market Analysis : Deliverable D3.1 - Feedback from RTOS users
by Adrian Matellanes, Agnes Lanusse, Francois-Xavier Russotto, and Stanislav Benes

Published October 2002
Copyright © 2002 by Ocera

Table of Contents
Document presentation ...i
1. Introduction ..1
2. General Analysis ..2

2.1. Introduction..2
2.2. General Requirements...2
2.3. Embedded Systems Requirements..2

3. Fault tolerance mechanisms analysis ...4
3.1. Fault-tolerance in open RTOS...4
3.2. Requirements ...5

4. Process Control Requirements...7
4.1. Introduction..7
4.2. Problems ...7
4.3. Requirements ...7

5. Multimedia Requirements ...9
5.1. Introduction..9
5.2. Problems ...9
5.3. Requirements ...10

6. Robotic Requirements ..12
6.1. Introduction..12
6.2. Problems ...12

6.2.1. Scheduling ..12
6.2.1.1. Synchronous tasks ..12
6.2.1.2. Asynchronous tasks ..12

6.2.2. Ressource managment ...12
6.2.3. Memory managment ..13
6.2.4. Fault tolerance..13
6.2.5. Device drivers ...13
6.2.6. Debugging ...14

6.3. Requirements ...14
6.3.1. Scheduling ..14

6.3.1.1. Synchronous tasks ..14
6.3.1.2. Asynchronous tasks ..14

6.3.2. Ressource managment ...14
6.3.3. Memory managment ..14
6.3.4. Fault tolerance..15
6.3.5. Device drivers ...15
6.3.6. Debugging ...15

iii

List of Tables
1. Project Co-ordinator ...i
2. Participant List...i

iv

Document Presentation

Table 1 Project Coordinator

Organisation

Responsible person

UPVLV

Alfons Crespo
Address

Phone:

Fax:

Camino Vera, 14

46022 Valencia, Spain

+34 963877576

+34 963877576
Email:alfons@disca.upv.es

Table 2 Participant List

Role Id. Participant Name Partcipant acronym
CO 1 Universidad Politecnica de Valencia UPVLC
CR 2 Scuola Superiore Santa Anna SSSA
CR 3 Czech Technical University in Prague CTU
CR 4 CEA/DRT/LIST/DTSI CEA
CR 5 Unicontrols UC
CR 6 MNIS MNIS
CR 7 Visual Tools S.A. VT

Table 3 Document version

Release Date Reason of change
1_0 15/01/2003 First release
2_0 15/04/03 Second release

v

Chapter 1. Introduction
The goal of this document is to present some feedback from the customers and users of
RTOSes.
We have made an overall analysis of the general requirements in the Real-Time and Em-
bedded Systems (RTES) arena and have specially analyzed the needs from the Robotics,
Multimedia and Process Control systems development points of view.
We find of special interest the fault-tolerance characteristics and worth a dedicated
chapter, in it we present the most relevant fault-tolerance mechanisms that lack in Open
RTOS.
The structure of the document is the following: First we will give a brief general analysis,
then we will discuss in more detail the fault-tolerance requirements; in Chapter 4 we
will present Process Control requirements, then Multimedia requirements and finally
the Robotics requirements.

1

Chapter 2. General Analysis

2.1. Introduction
In this chapter we will give an overview of the general requirements of RTES develop-
ment.
The main sources of information for the specification of what is going to be done in
OCERA are, the RTOS analysis that we have done in WP1, the analysis of the new
trends in RTOS research, and feedback from RTOS users.
On a general analysis, we found also a big segmentation in both, the proprietary and
the open source communities, which can be observed in "D1.1. RTOSes Analysis". There
is also a lot of information spread around that makes difficult for a user to choose a
particular RTOS, apart, of course, from the technical issues that makes the analysis
really difficult.
The number of users of RTOSes is increasing and the RTES marketplace keeps growing
at, probably, the highest rate in the Information Technologies area. As the investments
in embedded systems increase and the number of users multiplicate, the market keeps
segmentating. The intrinsic complexity of the RTES and the variety of applications they
are used for makes it difficult to evaluate and decide which RTOS fits a particular need.
When focusing on free software RTOS things get even worse, it is important to notice
the lack of apropriate documentation, clear specifications and the fact that lots of efforts
are being diversified between the different projects.

2.2. General Requirements
Here it is a list with requirements of a general character; we do not include the com-
mon functionality that is already available in almost all RTOS. For a list of currently
available functionalities, refer to "D1.1 RTOSes Analysis":

• Standard API
The use of a standard or close-to-standard API is most of the times mandatory. Cur-
rently POSIX is the approach preferred by customers, if available

• Common API between user space and kernel space
• Correct and up-to-date documentation and examples

When creating development tools or environments, documentation is sometimes un-
derestimated as a powerful reason why users make one choice or another. End users
find very important to have a complete and up-to-date documentation and to have
examples for every outstanding feature.

• Easy configuration and installation.
The configuration and installation of OCERA should be easy and smooth. We should
also provide an easy way to compile applications.

2.3. Embedded Systems Requirements
• Tools for configuration, generation and deployment

We have found a lack for an integrated environment where users could develop, test,
debug and deploy their RTES. We realized that there are several tools and environ-

2

Chapter 2. General Analysis

ments for each task (develop, test, debug and deploy) but they are incomplete and
difficult to integrate with each other. To provide such a framework is one of the
goals of OCERA.

• Remote debugger
The ability to debug through a serial port is an important feature we should consider.
There is already support for that in some systems and sometimes there are embedded
systems whose interface with the "exterior" is just a serial cable.

OCERA. IST 35102 3

Chapter 3. Fault tolerance mechanisms
analysis

3.1. Fault-tolerance in open RTOS
Fault-tolerance involves many different aspects that have been well studied in the litera-
ture. They concerned design issue, high level scheduling, specific replication techniques,
communication protocols as well as specific hardware components. However, if generic
approaches have been described and specific solutions implemented within proprietary
systems, until recently very few things had been done towards openness and standard-
ization under this topic.
Though the wonderful job done with the POSIX effort of standardization has been suc-
cessful in the real-time, (major Operating Systems providers are now shifting to POSIX
interface1), a lot of work has still to be done, particularly concerning fault-tolerant is-
sues.
Some commercial Operating Systems providers targeted to safety-critical applications
have developed other the years specific features to provide hard real-time performance
as seen in WP1. Among them, LynxOS which is used for mission-critical applications
has developed specific interrupt management and scheduling mechanisms in order to
provide determinism and linear performance scalability. LynxOS also fully supports
processor and MMU control functions thus insulating one faulty process from the oth-
ers. Besides protecting memory MMU provides significant efficiency gains thanks to
virtual addressing. In additional to these features available in the 4.0 version, a high-
availability package can be purchased. It offers: a Fault Management Framework for
managing fault-tolerant takeover operation, Redundant systems slot (SRSS) support
and Compact PCI, Hot Swap support for I/O boards.
Other initiatives have been undertaken in specific domains such as automotive to pro-
vide support for real distributed systems and fault-tolerance (OSEK).
But things are rapidly changing mainly, thanks to the open source community and its
impact on proprietary Operating Systems evolution strategy.
Recently, the telephone equipment manufacturers have considered using Linux for their
demanding carrier applications. Though Linux was a good candidate for them, the char-
acteristics of Public Switched Telephone Network (PSTN) applications required to op-
erate reliably and guarantee accessibility in emergency situations and needed thus fur-
ther developments towards reaching these high demanding requirements. They created
the Open Source Development Lab in January 2000 to promote the development of a
carrier grade Linux that would provide for high-availability. The OSDL has just issued
Requirements definitions in June 2002.
Many of the directions promoted within this framework will contribute to provide the
community with useful components that will serve also the goals of OCERA since many
projects will be started
We can cite work towards hardened driver support, development of whatchhdog timers,
ethernet link aggregation (bonding project under sourceforge) to provide for safe redun-
dant networking, Raid support, data check-pointing , resource monitoring among many
other directions
Open source community has also developed tools for large distributed clusters (beowulf
using PVM), that may provide useful hints for OCERA. Other developments within the
grid project may also provide material in the near future. All these developments will
have to be constantly surveyed during the project.
Finally we may take advantage of academic work done in the domain of scheduling
which is quite dynamic and can serve our objectives for advanced dynamic reconfigura-
tion.

4

Chapter 3. Fault tolerance mechanisms analysis

As a conclusion we can say that almost nothing can be reused from open-source com-
munity in order to implement fault-tolerance at present, however we can benefit from
the great experience obtained in academic research and in industrial implementations
to build rapidly basic mechanisms.

3.2. Requirements
• error detection and signaling

mechanisms to detect errors and signal these errors are mandatory. It is necessary
that they signal both code errors and temporal errors (deadline miss).

• reconfiguration mechanisms
reconfiguration mechanisms are mandatory too to decide what to do when an error
occurs. A fault-tolerance monitoring component has to decide if the application must
be stopped or not, if a reconfiguration is possible and apply a new mode at the appli-
cation level or at task level. This decision has as consequence to stop certain tasks,
change priorities or behavior of others and possibly create new ones.
This monitoring component must exploit information on tasks and tasks behaviors as
well as on application modes conditions of change. This information must be given ex-
plicitly by programmers at design time. It will then has to propagate new constraints
to a QoS component and to a dynamic scheduler at RT level.

• dynamic scheduling and QoS Scheduling
mechanisms to take into account dynamically new scheduling constraints. A QoS
scheduler could take into account alternative behaviors for tasks and importance cri-
teria. It should be able to reschedule resources on change of tasks constraints. The
RT-scheduler should be able to take into account orders to stop tasks and reschedule
automatically tasks left.

• error recovering mechanisms
error recovering mechanisms that permit to mask errors or to get back in a safe con-
sistent state are required to implement real fault-tolerant systems and not only a
system. These may be transactions systems and / or redundancy management mech-
anisms
error recovering mechanisms implementation implies that redundancy can be effec-
tive in a distributed system. This requires safe end-to-end communications and spe-
cific mechanisms for replicas check-pointing synchronization.

• fault-tolerant communication system
Communications must be atomic and a failure of a node must be detectable. Commu-
nication times must be predictable.
Specific communication protocols must be developed to support redundancy manage-
ment (distributed check-pointing and state transmission must be atomic)
Global time management must be provided.

• general debugging tools and tracing facilities
mechanisms to trace systems behavior are mandatory and measure times are manda-
tory to verify hypothesis on temporal behavior of applications.
debugging tools must handle thread level events.

• user specification and configuration tools

OCERA. IST 35102 5

Chapter 3. Fault tolerance mechanisms analysis

The user must have a way to specify in a declarative way temporal constraints on
tasks along with information related to fault-tolerance. Behaviors to be adapted when
faults occur must be explicitly entered in the system.
Tools to exploit this information and configure adequately the RTOS components are
also required.
Tools to check validity and feasibility of application given temporal constraints and
architecture characteristics, would be very useful.

Notes
1. LynusWorks for instance has renamed a lot of their LynxOS system calls in order to

be POSIX compliant

OCERA. IST 35102 6

Chapter 4. Process Control Requirements

4.1. Introduction
Process control covers mainly applications in fields of power plants, the gas industry
and the traffic.
One important common feature of these application fields is time criticality, because
controlling actions must be performed by a stated time limit, which is ordered by tech-
nological characterictics of the controlled object. Therefore real-time systems are usually
used in this region.
Second important common feature of these applications is that a fault of the controlling
system can cause a demage of property, an injury or death of persons. In such a case
these applications are generally called as critical applications.

4.2. Problems
To design controlling system in process control application field usually brings following
typical problems:

• We have to accomplish required time limits for control actions performing. The limits
are usually unrealizable in an environment of a standard operating system.

• We have to use a sufficiently reliable hardware and software according to the level of
criticality of the controlled application.

• Development environments for real-time operating systems aren’t usually so comfort-
able as it is common at other operating systems, so that SW development isn’t effective
enough.

• We have to use reliable and high performer communication means, which aren’t avail-
able in standard operating systems.

• An usual problem in this application field is that we need to run some tasks with
a guaranteed time period, because of precision of controlling actions in application
algorithms. This condition doesn’t perform even some real-time operating systems.

• In some special cases we need to ensure, that a process works in a protected mem-
ory space and no other process can rewrite its data. In other cases we need a shared
memory as an system object for interprocess communication or multiprocessor com-
munication in distributed systems.

• Proprietary operating systems are too expensive for a serial production.
Following requirements for real-time operating systems result from the above stated
problems.

4.3. Requirements
• The real-time operating system should include a set of objects for an effective inter-

proces communications to facilitate a dividing task into independent processes and
their processing according to their priority. The system should be able to work with
process switching period at least 1 ms.

• The OCERA components should be ported to a Motorola family processor, which are
supposed most reliable in the process control application field. Using a FLASH and
RAM filesystems because of hardware reliability is necessary too.
During whole OCERA project is necessary to keep rules of a system quality man-
agement for software development to ensure sufficient software reliability. Exception
handling and system redundancy as fault-tolerant means are required too.

7

Chapter 4. Process Control Requirements

• The development environment for OCERA components should include Gcc compil-
ers and debugers for cross and native environment. OCERA components should keep
POSIX API standard to facilitate a portability of applications.

• OCERA components should include real-time ethernet, TCP/IP, UDP/IP, CanOpen
protocol and communication means for RS232 and RS485 interface.

• A scheduling algorithm with fixed priorities of threads is necessary to guarantee fixed
period of some tasks. A scheduling algorithm with dynamicaly counting priorities is
possible for processes.

• OCERA components should provide a possibility to work in a protected memory space
for processes including cases of a dynamicaly allocated memory.
Shared memory is required for interprocess and multiprocessor communication.

• The real-time operating system should be free.

OCERA. IST 35102 8

Chapter 5. Multimedia Requirements

5.1. Introduction
We will try to discuss the real-time requirements for the development of multimedia
applications. Why should I use real-time capabilities to develop multimedia applications
if I normally use multimedia applications with my desktop OS?
Audio and video have some time constraints that should be managed. It depends on
the nature of your applications whether you can permit yourself to respect those time
constraints or not. Usually in current desktop OS you will miss those deadlines, the
more loaded the machine the more deadlines you will miss.
The use of computers for multimedia purposes (professional or particular use) has been
increasing in the last years thanks to the availability of more and more powerful ma-
chines. Current multimedia applications range from simple players, editing applica-
tions, A/V recorders through complex object recognition applications for digital video or
speech recognition. Platforms also range from powerful SMP machines through PDAs
and other embedded systems.
Applications that require live digital audio and video are unique concerning their real-
time throughput and latency requirements.
One important question arise when considering multimedia applications from the RT
and/or embedded point of view, though there are multimedia systems specially dedi-
cated, most of the applications run in a dynamic enmvironment where resources have
to be shared with a considerable range of applications varying, thus, the load of the
machine.
Existing operating systems and network communications protocols are usually inade-
quate for multimedia systems such as video browsing of high-bandwith conferencing.
This is due to the real-time processing requirements of digital audio and video, and in
particular to the rigid throughput and latency requirements. Being normally not critical
systems, we are used to see multimedia applications in current Desktop OS that usu-
ally have a lot of jitter, latencies and unpredictability. When high-quality multimedia
is demanded or critical applications are integrated into multimedia systems, the use of
Real-Time capabilities is obliged.

5.2. Problems
Most of the widely used multimedia applications are not critical. Missed deadlines in
A/V applications do not led to catastrophic consequences. On average, digital video pro-
cessing is not as much time critical as digital audio processing.
Some of the problems faced when working with multimedia systems are:

• Audio and Video jitter
• High Bandwidth

Multimedia contents are often characterized by having a high bandwith. Capturing
several A/V channels, for example, results in a high bandwidth being bursted through
PCI or transmitted accros an ethernet network. Aside, from the data compression
point of view, there is a trade-off between bandwidth and audio and video quality,
usually one have to adapt quality to reduce bandwidth.
Not having a mechanism to control deadline misses and time constraints forces de-
velopers to be conserative and reduce bandwidth as much as possible to be able to
process the video signal when the machine is overloaded.

• Latency

9

Chapter 5. Multimedia Requirements

Poor lip-synchronization between audio and video. Buffering is the usual mechanism
to get rid of overload conditions. But this mechanism increases latency. On profes-
sional applications, latency should not exceed 150 ms. When minimal latency is re-
quired, deadline misses and time-related problems arise and developers begin think-
ing about RT capabilities.

• Slow responsiveness
Problems about slow responsiveness come out when resources have to be shared with
other applications or when dealing with high bandwith signals.

• Insatiability
The more available resources there are, the more resources multimedia applications
demand. Thus it is often difficult to know how and when to limit resource consumption

5.3. Requirements
Considering the problems presented in the previous section, it is natural to ask for cer-
tain real-time capabilities that permit the development of multimedia application hav-
ing a deeper control of machine resources

• Interrupt latency and throughput.
Systems with large interrupt latency do not support well multimedia applications
due to the Continuous Media character of multimedia applications. Handling a MIDI
stream, for instance, results in a high number of interrupts to the kernel. Systems
with slow context switch cannot cope with those system demanding streams.

• Provide the user with a predictable control of resource allocation.
Due to the insatiability of multimedia applications, systems can starve of shared or
communications resources. The mechanisms to allocate these resources should allow
dynamic change in allocation and some form of predictable availability of the specified
resource.

• Mechanisms to adapt, dynamically, to the different workload situations.
Due to the high bandwidth managed by multimedia systems, adapting to different
worload conditions affects in a critical manner the use of resources. Droping an image
or skipping a GOP (Group of Pictures) in a MPEG A/V sequence results in tens to
hundreds of kilobytes of difference being written to disk, sent through the network,
etc... Moreover, the interactive character of multimedia systems contribute to the sys-
tem overload since, apart form the, already CPU-consuming, data processing of sig-
nals, systems usually have to send their content through the network or to the VGA
increasing hardware interrupts, PCI bandwidth limitations, etc... for man-machine
interaction.
It would be also desirable that this adaption is done in a smooth manner, avoiding
rapid accelerations, decelerations in multimedia output.

• Missed deadlines notification
Though, usually, missed deadlines do not produce catastrophic results, it is important
to have tools to know if a deadline has been missed so the application can choose
the apropriate behavior in each case, by skipping the computation, perform just a
part of it, etc... Some issues in this respect are deadline control, notification, recovery
schemes, etc..

OCERA. IST 35102 10

Chapter 5. Multimedia Requirements

• Deliver expected behavior when not in overload conditions.
The facts that we have mechanisms to manage resources, and eventually adapt the
system to diverse workload conditions should not prevent the system to work as ex-
pected when in normal conditions. This can be regarded, in short, as a "new mecha-
nisms should not affect scheduling and kernel performance" policy

• Mode-changes Management
Mode-changes management results very useful when dealing with multimedia since
developers can provide different scenarios for different resources availability states.
We can think for example in shutting down a video motion detector when the systems
enters in alarm mode, etc...

• Static and Dynamic QoS
QoS level specified in task creation vs. level automatically changed

• Feedback on actual performance
Support for some kind of feedback between the system and the application on the
actual performance is desirable.

OCERA. IST 35102 11

Chapter 6. Robotic Requirements

6.1. Introduction
Robotics systems using real-time software embedded may have several different archi-
tectures, depending on system requirements, objectives and constraints. However, what-
ever the architecture, problems encountered in robotics applications development are
often the same ones.
The following sections present the most common problems encountered when developing
real-time application for robotic systems and sets a list of requirements that a RTOS
should satisfy to avoid or minimize such problems.

6.2. Problems
In this section, a set of common problems occurring in robotic application development
is listed and detailed.

6.2.1. Scheduling
Most of the robotic applications are generally composed of two different kinds of tasks
that can be either synchronous or asynchronous. Problems and requirements are differ-
ent for these two kinds.

6.2.1.1. Synchronous tasks
Robotics systems requirements are always expressed in terms of deadlines. For instance:
an acquisition phase must start at the latest before a specifiable delay after the begin-
ning of the period; an actuation phase must finish its work at the latest before the end
of the period or, if asynchronous work is needed each period, at the latest at a specifiable
delay before the end of the period.
In mostly used RTOS for robotic application purposes (VxWorks, RTLinux, RTAI, ...) the
only scheduling policy implemented is the Rate Monotonic Algorithm (RMA), in which
every task is assigned a fixed priority. However, when application becomes more complex
and counts many tasks running simultaneously, it may be difficult to distribute fixed
priority to the different tasks in order to perform the correct job. Fixed priority is not
well suited in this case because far away from the initial requirement.
One could think that the dynamic approach provided by the Earliest Deadline First
algorithm (EDF) and available in many RTOS is the most suitable for robotics needs.
However, one must be sure that some critical tasks in the system will always have a
higher priority than others, independently of their deadline. So pure EDF algorithm is
not as well suited as appearing.

6.2.1.2. Asynchronous tasks
For asynchronous tasks, problems are quite different. Deadline misses are allowed for
asynchronous tasks by definition, or sometimes, such tasks have no deadline at all.
Asynchronous tasks generally have to perform either basic background jobs or event-
driven non time-critical jobs. In both cases, it may be difficult to guaranty that CPU
time given to each asynchronous task is optimal regarding the overall application CPU
usage; e.g.: guaranty that a minimal average CPU time is given to the asynchronous
tasks set and that each of the concurrent tasks of this set has fair access to the CPU
resource, especially when some of them are CPU hungry.

12

Chapter 6. Robotic Requirements

6.2.2. Ressource managment
Access to resources shared by tasks belonging to different real-time classes can cause
blockings leading to missed deadlines in the real-time cycle. Only a few RTOS provide
efficient mechanisms to ensure integrity of a resource despite potential concurrent ac-
cess and avoiding, or minimizing, priority inversion.
Moreover, the use of some resource protection mechanisms with some particular
scheduling policy can lead to inopportune context switches introducing high overheads
and, in worst case, deadlines miss (e.g.: synchronization semaphores and standard
RMA scheduling policy under VxWorks).

6.2.3. Memory managment
Paging schemes or other mechanisms for dynamic memory allocation are generally not
provided in RTOS because they may create unpredictable delay incompatible with re-
quired real-time behaviour. Although, statically reserved memory at system initiali-
sation (which is generally performed) do not provide full flexibility to developers who
sometimes must resort to complex strategies which do not improve efficiently memory
management. For instance, it may sometimes be necessary to allocate more memory
than needed by the application.
One other problem taking place in the memory management section is memory protec-
tion. Main requirement of robotic systems is reliability, which is highly disadvantaged
when no memory protection is provided at runtime by the RTOS. Despite of that, most
of the RTOS do not provide any memory protection mechanism at runtime.

6.2.4. Fault tolerance
As technology make progress, robotic applications and hardware become more and more
complex and, as a result, it becomes more and more difficult to certify that a peace of
software is 100% fault free. New generation mobile robots, for instance, implement very
complex path planning algorithms that run in real time. Such algorithms have so many
internal states that it is virtually impossible to exhaustively test any transition from one
state to another that may occur. As a result, even after validation, bugs often remain in
the source code.
Main requirements for robotic systems are reliability and robustness. To avoid such bugs
to produce overall system lock, hardware breakdown or even physical injury, fault tol-
erance mechanisms are generally implemented in the core of the application. Although,
as these mechanisms are implemented at the application level, efficiency of such algo-
rithms is rarely optimal.
Robotic systems may be critical (e.g.: automatized transportation system, cooperative
robots manipulated by humans such as master robot arms or exo-skeleton robots) or not.
In critical robotic systems, fault tolerance is mandatory mainly to avoid physical injury.
In this case, the main requirement is fault detection and confinement of the faulty task
so that it cannot interfere with other tasks running in the system and finally the system
can safely enter a secure state.
In some other applications, robotic systems have to intervene in hostile environment
where man cannot go (e.g.: dismantling robot evolving in nuclear environment, subma-
rine robot evolving at very high deep,...). Such robotic systems are not critical (in the
way there is no risk of physical injury) but are often very expensive. In the mentioned
applications, one has to be sure that robot will always be able to go back home even if
a failure (software or hardware) occur; if not, many money (and time) may be lost. In
this case, the main requirement is automated system reconfiguration so that it is able to
perform some specific tasks in a degraded mode such as: motion using reduced actuators
or sensors set.
Exceptions can be considered as "faults" and so lead to same problems and requirements.

OCERA. IST 35102 13

Chapter 6. Robotic Requirements

6.2.5. Device drivers
Device drivers and interrupt handling often cause severe headaches to robotic develop-
ers who generally have no good training nor background of driver (and more generally
low level) programming.
Despite of that, robotic developers always have to face up to new hardware (e.g.: sensors,
actuators, communication adapters,...) which is constantly evolving and require up to
date drivers to work properly.
When using commercial RTOS such as VxWorks, robotic developers can benefit for com-
mon devices from the very large device drivers library provided by WindRiver. But when
using a free open source RTOS, device drivers are counted on fingers of one single hand
and driver programming cannot be overlooked.

6.2.6. Debugging
Debugging real-time application could be a mess. Only a few RTOS provide adequate
tools to make debugging easier to application developers.

6.3. Requirements
For all problems related in the previous section, an exhaustive list of requirements are
reported in the following section.

6.3.1. Scheduling

6.3.1.1. Synchronous tasks
As seen in the previous section, standard RMA algorithm is not well suited to robotic
applications, as much as pure EDF algorithm that cannot guaranty that critical tasks
will always have the CPU resource when needed. Depending on the application, an al-
gorithm could be more suitable than another. So the best feature a RTOS could provide
to robotic application developers is a set of different scheduling policy (and even option-
ally user defined algorithms) that could be selected according to the specific needs of the
application.
As for other time-critical applications, fast context switch time is mandatory for robotic
applications especially to respond in a minimal time to an exceptional event that could
occur in the system such as: obstacle detection, hardware failure detection,...

6.3.1.2. Asynchronous tasks
Regarding the problems described in the previous section, a mechanism providing pre-
dictable control of the CPU usage allocation to asynchronous tasks is required. This
mechanism should guaranty minimal CPU resource to the asynchronous tasks set and
a configurable fair CPU usage for each of the concurrent tasks of this set.

6.3.2. Ressource managment
The RTOS should provide efficient mechanisms to ensure integrity of a resource despite
potential concurrent access and avoiding or dramatically minimizing priority inversion.
A mechanism to avoid inopportune context switches when accessing or releasing a re-
source should also be provided.

6.3.3. Memory managment
A feature providing dynamic memory allocation at runtime in synchronous tasks would
be of great help to developers. Nevertheless, such feature should not lead to unpre-
dictable delays and should not cause unpredictable software faults.

OCERA. IST 35102 14

Chapter 6. Robotic Requirements

As discussed in the previous section, the main requirement of robotic application is
reliability. Following this requirement, a memory protection mechanism is mandatory.
This mechanism should lead to an exception raising (that may be handled by a Fault
Tolerance manager) if a task attempts to read or write data out of its reserved memory
area.

6.3.4. Fault tolerance
The exhaustive characteristics of fault tolerance requirements are reported in the dedi-
cated Fault Tolerance chapter (3), section 3.2.

6.3.5. Device drivers
Robotics applications involve many new devices such as conversion cards and
constantly require development of new drivers. A tool and/or development rules to
make new drivers suitable to RTOS would be welcomed. Also, a specific protocol
providing an additional layer of abstraction allowing to build generic real-time
compatible drivers would be useful.

6.3.6. Debugging
Debugging tools and tracing facilities are mandatory for real-time development as for
any software development. As debugging in kernel space is a mess, adequate and/or
standardized tools would be of great help.

OCERA. IST 35102 15

