
White paper

Memory protection in a threaded system

OCERA Legal Status.
by Alfons Crespo, Ismael Ripoll, Miguel Masmano, Vicente Esteve.

Published 23. April 2004
Copyright © 2003 by OCERA Consortium

Table of Contents
Chapter 1. Introduction...1
Chapter 2. What can be protected?...1
Chapter 3. Processor features related to memory protection..2
Chapter 4. Memory protection in Linux...4
Chapter 5. Conclusions...4

OCERA IST 35102 iii

Document Presentation

Project Coordinator

Organisation:UPVLC
Responsible person:Alfons Crespo

Address:Camino Vera, 14, 46022 Valencia, Spain
Phone:+34 963877576

Fax:+34 963877576
Email:alfons@disca.upv.es

Participant List

Role Id. Participant Name Acronym Country
CO 1 Universidad Politécnica de Valencia UPVLC E
CR 2 Scuola Superiore Santa Anna SSSA I
CR 3 Czech Technical University in Prague CTU CZ
CR 4 CEA/DRT/LIST/DTSI CEA FR
CR 5 Unicontrols UC CZ
CR 6 MNIS MNIS FR
CR 7 Visual Tools S.A. VT E

Document version

Release Date Reason of change
1_0 03/03/04First release

OCERA IST 35102 iv

Chapter 1. Introduction

Chapter 2. What can be protected?

The application

The main difference between a conventional concurrent application based on heavy
processes or threads is that all threads share the same memory space, as well as most of the
system internal data structures (as file descriptors, process attributes, etc).

Threads were designed to implement concurrent (or parallel) applications in an efficient
way. Although it is possible to write concurrent applications using heavy process (via the
fork() system call), the strong isolation and memory protection enforced by the operating
system, introduces a considerable overhead. In fact, most of the POSIX real-time extensions
has been designed to work for the threading execution model (priority inheritance protocols,
timed functions, etc.).

On the other hand, the flexibility and small overhead of the single execution space (with no
memory protection) of a threading application highly increments the consequences of a
programming bug. For example, a wild pointer may overwrite data used by other thread
causing it to operate incorrectly.

The POSIX 1003.13 standard defines the Profile 51 (real-time embedded systems) as a
thread model. POSIX thread standard define a thread as:

“A single flow of control within a process. [· · ·] Anything whose address may be determined
by a thread, including but not limited to static variables, storage obtained via malloc(),
directly addressable storage obtained through implementation defined functions, and
automatic variables, are accessible to all threads in the same process.”

The only memory space that can be protected in this class of systems is the executive code
and data, as well as the memory already not allocated to the application.

The executive

The operating system kernel itself is a large program that may also be organised in smaller
functional units (hardware drivers, networking stack, filesystems, etc.). Depending on the
internal operating system design, these functional units may be isolated and stand-alone
enough to implement memory protection among them or not.

In the microkernel and nanokernel approaches, the kernel is structured in a highly modular
collection of independent services that communicate between them using microkernel
primitives. The microkernel is executed in supervisor mode, while the rest of the tasks
(servers) that are part of the OS are executed in its own address space, protected from each
other.

Monolithic kernels are compiled as a single big program, where all the tasks (threads,
servers) are executed in the same memory space and in the highest processor privilege level.
This kind of operating systems are easier to implement (it is possible to access any data

OCERA IST 35102 1

structure from any code) and the kernel is faster because the communication inside the
kernel has less overhead (it can be done with simple function calls). On the other hand,
monolithic kernels are less robust and are more difficult to maintain and port.

Linux and RTLinux have been designed following the monolithic approach.

Chapter 3. Processor features related to
memory protection

Memory protection can only be implemented if the microprocessor (or the memory manager
unit) provides some specific facilities to do it. It is not possible to implement memory
protection without the help of the hardware.

Historically, memory protection mechanisms has been implemented jointly with the support
for virtual memory. Memory protection information is stored in the same data structure used
to translate memory address. There was two approaches to virtual memory and memory
protection: segmentation and paging.

Currently, segmentation is only used in the IA32 processor family and it is only maintained
for compatibility reasons. Paging is implemented in all the processors that support virtual
memory (including the IA32 family), also paging is the preferred hardware mechanism used
by most (if not all) UNIX systems to implement virtual memory.

Intel AI32 family

Most of these information has been directly taken from the Intel Architecture manuals (“The
Intel Architecture Software Developer s Manual, Volume 3: System Programming Guide"

Intel defines four privilege levels (called “rings”). Ring-level 0 is the highest privilege level
and ring-level 3 the lowest one. Ring-level 0 is considered “supervisor mode” while ring-
levels 1 to 3 are “user mode”.

Segmentation
The IA32 architecture is based on the
segmentation model. There is no way to
disable segmentation. Also, most of the
basic data structures required by the
processor to work in advanced mode
(protected mode) are stored is specific
segments (TS, CS, DS, ES, SS, etc.), which
are accessed through the global or local
descriptor tables (GDT/LDT). These tables
contain entries called segment descriptors.

Addresses emitted by a program are called
“logical address”. A logical address
consists of a segment selector and an offset.
The segment selector among other things
provides an offset into a descriptor table

OCERA IST 35102 2

Illustration 1 Address translation

(GDT or LDT). The segment descriptor specifies the size of the segment, the access rights
and privilege level for the segment, the segment type, and the location of the first byte of the
segment in the linear address space (called the base address of the segment). The offset part
of the logical address is added to the base address for the segment to locate a byte within the
segment. The base address plus the offset thus forms a linear address in the processor's linear
address space.

Next is the the information stored in the segment descriptor regarding memory protection:

– Descriptor privilege level (DPL): Determines minimum processor privilege level
required to access this segment.

– Executable, read/write: For segments that contain code or data.

Paging
When paging is enabled, lineal addresses are translated to physical addresses the processor
uses the page directory and page tables to translate the linear address into a physical address
and then performs the requested operation (read or write) on the memory location, see
Illustration 1. Page tables is organised in two levels1: Page directory (first-level) and page
table (second-level).

Protection information for pages are managed by two flags in a page-directory or page-table
entry: the read/write flag and the user(ring-level 3)/supervisor(ring-level 0-2)2 flag.

When the processor is in supervisor-mode and the WP flag in register CR0 is clear (its state
following reset initialisation), all pages are both readable and writable (write-protection is
ignored). When the processor is in user-mode, it can write only to user-mode pages that are
read/write accessible. User-mode pages which are read/write or read-only are readable;
supervisor-mode pages are neither readable nor writable from user mode.

When paging is enabled, the processor evaluates segment protection first, then evaluates
page protection.

Specific compatibility mode (WP bit)
Write Protect (bit 16 of CR0) inhibits supervisor-level procedures from writing into user-
level read-only pages when set; allows supervisor-level procedures to write into user-level
read-only pages when clear. This flag facilitates implementation of the copy on write
method of creating a new process (forking) used by operating systems such as UNIX.

Changing the state of the WP bit do not cause any collateral overhead (TLB invalidation),
therefore, it can be used to implement simple memory protection in supervisor-mode.

ARM

This architecture defines paging and a simple memory protection using memory regiones
(ranges).

Paging
Page entries are organised in a two level page table directory. Protection information for

1 The original and default configuration. IA32 also defines three level page tables to access more
than 4GB.

2 Note that paging mechanisms consider privileged-mode is ring levels 0-2 and user-mode is ring-
level 3 only. Unlike segmentation mechanism which considers privileged-mode only ring-level 0
and the rest is user-mode.

OCERA IST 35102 3

pages descriptors has two bits called AP (Access Permission bits), and each page belogns to
a “domain” (explained latter) . This AP bits control how page can be used depending on the
execution mode (privileged or user):

AP (bits) Privileged User

00 Depends on other system config options

01 Read/Write No access

10 Read/Write Read Only

11 Read/Write Read/Write

Each individual page is assigned to a “domain”. There are 16 different domains. Access to
each domain is controlled by a two bit field in the Domain Access Control Register (DACR
32bits register).

– (00) No Access: Any access generates a domain fault.

– (01) Client: Accesses are checked the AP bit in the section or page descriptor bits.

– (11) Manager: Accesses are not checked against the access permission bits in the AP bit
in the section or page descriptor bits, so a permission fault cannot be generated.

The WP bit of the IA32 architecture may be simulated changing the corresponding domain
bits of the DACR register.

Protection regions
There are eight different regions. Each region defines ranges of physical memory and the
protection access permissions:

AP (bits) Privileged User

00 No access No access

01 Read/Write No access

10 Read/Write Read Only

11 Read/Write Read/Write

Chapter 4. Memory protection in Linux

Linux

Linux uses the basic flat model, where the operating system and application programs have
access to a continuous, unsegmented address space. All segment registers points to the same
segment descriptor. Each segment has full access to the whole memory space.

Virtual memory (and memory protection) is implemented through paging. Each process has
its own page directory, but shares the kernel space which is located in the fourth gigabyte.
Pages located below 3 gigabyte are user-mode accessible, and pages above the 3 gigabyte
are marked as supervisor pages.

Linux enables the WP flag to implement the copy-on-write feature.

OCERA IST 35102 4

RTLinux

No memory protection at all implemented. Any thread has complete access to all address
space.

RTLinux Stand-alone

Rtl-SA provides three different memory schemes:

1. Flat memory space with no protection. This is the original RTLinux model, where all the
code (RTLinux executive and application) is compiled and linked as any conventional
program. There is no overhead when a system call is invoked.

Paging is not enabled, and segmentation is initialised to the basic flat model.

2. RTLinux executive protection. This model protects the RTLinux executive against write
access from application threads. Application threads are not protected among them.

Paging is enabled. Only one single page directory is initialised, and logical pages are
mapped into the same physical pages. Pages that contain the Rtl-SA executive are
marked as read-only pages (write is not allowed), and the rest of the pages are marked as
read and write. Before RTLinux code is executed the WP flag is cleared (full access) and
on return to application code the WP flag is set (executive pages are protected).

3. Context memory protection. The execution model has been augmented to support several
protected execution contexts. In each context lives one or more threads.

This memory protection scheme works as the previous one but with the addition of a
page directory per context and the corresponding page directory change on the context
switch between threads of different contexts.

In order to keep compatibility with standard RTLinux, applications are always executed in
privileged-mode.

Chapter 5. Conclusions
Memory protection is a core operating system feature. The memory protection scheme used
(monolithic kernel, memory protection inside the kernel, user application model, etc.)
greatly determines the implementation of the operating system.

Changing the memory protection scheme of an already implemented system is not an easy
task. There are two ways to change (or add memory protection):

– Rewrite the memory manager code and also some parts (servers, drivers, etc.) of the
operating system to adapt them to a new communication mechanism.

– If we are lucky and processor has some facilities not used the current implementation,
then it may be possible to use them to add the required mechanisms.

Since standard RTLinux completely delegates memory management to Linux, it has been

OCERA IST 35102 5

possible to implement in the RTLinux Stand-alone version several protection mechanism in
a transparent way. RTL-SA Memory management code has been written from scratch.

We think that it is possible to achieve complete memory protection in standard RTLinux
(when executed jointly with Linux) using specific IA32 features. Some preliminary results
are encouraging.

OCERA IST 35102 6

