Improving the responsiveness of Linux Applications in RTAI

Luca Marzario, Luca Abeni, Giuseppe Lipari
ReTiS Lab, Scuola Superiore S. Anna,
Piazza Martiri della Liberta
lukesky@gandalf.sssup.it {luca, lipari}@sssup.it

Abstract

When using RTAI for executing hard real-time tasks that require a large amount of processor band-
width, Linux applications can experience a big delay. In fact, the real-time tasks, handled by RTAI, have
always priority over Linux, and there are large intervals of time in which Linux is not executed at all.
This approach makes it impossible to schedule soft real-time applications in Linux. In this paper, we
propose to apply resource reservation techniques to the RTAI scheduler. We implemented the Constant
Bandwidth Server (CBS) algorithm that permits to specify a maximum budget and a period for each
task, Linux included. By using this approach, we are now able to reserve a minimum amount of processor
bandwidth to Linux, with several advantages: during the debug phase of a real-time application, even if
a high priority real-time task goes into a infinite cycle, Linux is still able to execute and we can examine
the log files or issue shell commands. Second, we can guarantee soft real-time tasks scheduled inside
Linux. Third, we can guarantee a maximum delay in the communication between hard real-time tasks,
scheduled by RTAI, and soft real-time tasks inside Linux. After presenting our implementation, we show

the advantages of our approach with some experiment.

1 Introduction and motivation

RTAI s a real-time kernel that permits to execute, on
the same physical machine, both hard real-time ap-
plications and the Linux Operating System. RTAT is
particularly useful when dealing with real-time pro-
cesses that needs a guaranteed low response-time to
interrupts. By using the fixed priority scheduler pro-
vided with RTALI, it is also possible to schedule peri-
odic hard real-time, and to guarantee the schedula-
bility of the system.

In RTAT Linux is assigned the lowest possible pri-
ority, and it is scheduled in background, i.e. when
no other real-time task requires execution. This is
the simplest way to guarantee that the behavior of
the real-time tasks is not compromised by the be-
havior of Linux applications. However, under high
real-time load, this method can be too restrictive for
Linux applications.

In certain cases, it is useful to mix hard real-time and
soft real tasks activities in the same system. Hard
real-time tasks are critical activities that must finish
before their assigned deadline, otherwise the system
correctness is compromised. Soft real-time systems
are non critical real-time activities: they are required
to finish before their deadline, but occasional dead-

line misses do not compromise the correctness of the
system. The most popular example of soft real-time
application is a multi-media player: if some video
frame is not displayed on time, or if it is skipped,
nothing catastrophic happens. The ratio of deadline
misses over a given interval of time can be taken as
a measure of the Quality of Service (QoS) experi-
enced by the final user: the lower the deadline miss
ratio, the better the QoS. Soft real-time applications
are usually executed on Linux because many drivers,
libraries and tools for video and sound systems are
already available on Linux.

When soft and hard real-time applications share the
same physical machine, one possibility is to schedule
hard real-time tasks as RTAI tasks, so guaranteeing
a bounded response time; and soft real-time tasks
as Linux processes. However, since in RTATI Linux
is assigned the background priority, the amount of
execution time assigned to Linux processes over a
given time interval depends on the requirements of
the RTAI tasks and can vary a lot from interval to
interval. Therefore, the amount of execution time
that multimedia streams will receive is quite irregu-
lar, and it is difficult to guarantee a-priori a certain
level of QoS.

In this paper, we propose to apply a well-established

technique in the real-time system literature, called
Resource Reservation, to RTAI. In particular, we
changed the RTAI scheduler to implement the Earli-
est Deadline First (EDF) scheduling policy [5] and
the Constant Bandwidth Server (CBS) [1]. With
CBS, every task is assigned a capacity @ and a pe-
riod P, with the meaning that a task is allowed to
execute at least () unites of time every P units of
time. In addition, in our scheduler, Linux is served
by a CBS: in this way, Linux cannot jeopardize the
behavior of the hard real-time tasks, but it is guar-
anteed a minimum execution time of @) every period
P. Tt is worth to point out that the proposed mecha-
nism is very general, and it can be implemented with
little effort in RT-Linux as well.

This mechanism has very little overhead at run-time.
Moreover, it has another advantage in the debug
phase. In fact, during the development of a hard
real-time task, it can happen that the task goes into
an infinite cycle. For example the task might actively
wait for a condition that does never happen. With a
pure fixed priority scheduler, it is quite difficult to see
what happens, because Linux is scheduled in back-
ground and will never execute again. Instead, with
our scheduler, Linux is guaranteed a minimum exe-
cution time every period: therefore, the programmer
can still record the trace and see the logs showing
the situation.

The paper is organized as follows: after introducing
some terminology and assumption (Section 2), and a
brief description of the Constant Bandwidth Server
(CBS) (Section 3), we present our implementation in
RTALI (Section 4). Then, we describe the experimen-
tal setup and show the results (Section 5). Finally,
we draw the conclusion and discuss future improve-
ments.

2 Terminology
Model

and System

A “Real-Time System” is a set of activities with tim-
ing requirements. The correctness of a Real-Time
System depends not only on the correctness of the
results but also on the time at which they are pro-
duced. A task is a finite or infinite sequence of re-
quests for execution on a shared resource (e.g. the
CPU). The i-th task in the system will be denoted
by 7;. A task request is also called job or instance:
the j-th job of task 7; will be denoted by J; ;.

A job is characterized by at least an arrival time and
computation time. The arrival time of job J; ; will
be indicated by a; ; and its computation time by ¢; ;.
A real-time job has at least an additional parameter,
the absolute deadline dj ;.

Periodic tasks are tasks with periodic
activations:a; ; = a;;—1 + T;, where T is the pe-
riod of the task. Sporadic tasks have a minimum
interarrival time T; such that a;j > a1+ T;.
Real-time tasks are required to finish each job before
its deadline. Usually, a periodic task has a relative
deadline equal to its period: d;; = a;; + T;. This
means that each job must finish executing before the
next job is activated. However, for very critical ac-
tivities it is possible to specify relative deadline less
than the period. For the sake of simplicity, in this
paper we will only consider real-time tasks with rela-
tive deadline equal to period. A real-time task set is
said to be schedulable under a given scheduling pol-
icy if every real-time job finishes before its deadline.
In this respect, the periodic tasks of RTAI can be
modeled by real-time periodic tasks, whereas Linux
can be modeled as a tasks that consists of only one
job that is always active.

Resource reservation in real-time systems. A
general methodology for resource scheduling in real-
time system is the resource reservation framework.
The idea is not new [6, 7, 12]. However, it was first
formally introduced by Rajkumar [11]. Each task is
reserved a fraction of the processor available band-
width: if the task tries to use more than it has been
assigned, it is slowed down.

This framework allows a task to execute in a system
as it were executing on a dedicated virtual processor,
whose speed is a fraction of the speed of the proces-
sor. Thus, by using a resource reservation mecha-
nism, the problem of schedulability analysis reduces
to the problem of estimating the computation time of
the task without considering the rest of the system.
A formal definition of a reservation can be the fol-
lowing:

Definition 1 A reservation for a resource R is an
abstraction of a scheduling mechanism in which a
task is guaranteed the use of the resource for a time
Q) every period P.

In this paper, we consider only CPU reservations. A
resource reservation is generally implemented by as-
sociating a pair (@, P) to each task, where % is the
fraction of processor utilization reserved to the task.
When a task is activated for the first time in the sys-
tem, with parameters (); and P;, an admission test

is run: "
Qi
— < U
Z Pz > Viub
Jj=1

where Up,, depends upon the underlying scheduling
policy. For example, for EDF this limit is 1. If the
admission test is passed, each task is guaranteed to
execute for the reserved amount of time. If the test is

not passed, depending on the resource management
policy, we can decide to reject the task or to sched-
ule it with a lower QoS. In this paper, we will only
address the problem of scheduling with a resource
reservation algorithm. The problem of finding a re-
source management policies is beyond the scope of
the paper: see [2, 9] for more details.

In the resource reservation framework, a hard real-
time task is assigned a capacity @) greater or equal
to its worst case computation time and a period P
equal to the task’s period. A soft real-time task, in-
stead, can be assigned a maximum capacity @) less
than the WCET, because even if some deadline is
missed nothing catastrophic happens. By doing so,
we can save precious resources for admitting other
hard or soft real-time tasks, without compromising
the schedulability of the hard real-time tasks.

A scheduling algorithm based on the resource reser-
vation abstraction is usually implemented as follows:
a remaining budget ¢; is assigned to each task and
it is initialized to @);. When the task executes, g; is
decreased accordingly. When the remaining budget
goes to 0, the task is blocked until the end of the
period. The budget is then replenished at the be-
ginning of every period. Resource reservation tech-
niques have been proposed both in fixed priority
[3, 10] and in dynamic priority systems [1, 4].
Although resource reservations have been originally
developed for supporting multimedia activities and
for permitting to schedule real-time and non real-
time activities on the same system, they have been
proved to be very effective also in serving control
tasks, and activities that are traditionally considered
hard real-time [8]. Hence, we believe that the inclu-
sion of a reservation technique in RTAT is important.

3 The
Server

Constant Bandwidth

The Constant Bandwidth Server (CBS) is a service
mechanism providing CPU resource reservations on
an EDF scheduler. The CBS extends the CPU reser-
vation concept to make the algorithm work conserv-
ing (i.e., the CPU is never idle if there is at least
a task ready to execute) by using dynamic priori-
ties. The basic idea is that every task is associated
a dynamic scheduling deadline by a server, and the
ready queue is ordered according to tasks’ scheduling
deadlines.

The CBS algorithm is work conserving because when
the budget ¢; is depleted, the scheduling deadline is
postponed by P, but the task is not blocked. The
server assigns scheduling deadlines to jobs so that
each task is reserved an amount of CPU time @ ev-

ery server period P, according to the following rules:

Rule 1 When a new job J;; arrives at time 75 5, if
q; > (d; — TiJ)%:, then a new scheduling dead-
line 7; ; + P; is generated, and g; is recharged
to the maximum value @;, otherwise the job is
served with the last server deadline using the
current budget.

Rule 2 Whenever a task 7;, the budget ¢; is de-
creased by the same amount.

Rule 3 When ¢; = 0, the server budget is recharged
at the maximum value @Q; and the server dead-
line is postponed by P;. The EDF queue is
then update accordingly.

Rule 4 the job with the earliest scheduling deadline
is selected to execute, according to the EDF
policy.

The CBS algorithm can correctly cope with aperiodic
activations, and provides good performance, thanks
to its work conserving nature [1].

In this paper, we are interested in resource reser-
vations because of their capacity to guarantee that
a reserved task will execute at least for a minimum
fraction of the CPU time. We use this property for
guaranteeing that Linux is not completely starved
by RTAI real-time tasks. In fact, once the CBS algo-
rithm has been implemented in RTAI, it is possible
to schedule Linux with a dedicated CBS, instead of
scheduling it in background. This approach has two
advantages:

1. guarantees hard real-time tasks;
2. avoids starvation of Linux processes;

3. permits to increase the responsiveness of Linux
applications.

Hence, the CBS scheduler permits to associate two
parameters to Linux: the reserved bandwidth BY =
@/ P, representing the fraction of the CPU time that
Linux processes are guaranteed to receive, and the
CBS period P, which affects the responsiveness of
Linux processes.

At run-time, Linux is treated exactly as any other
hard real-time task: initially, it is assigned an abso-
lute deadline d = P and a remaining capacity ¢ = .
When the capacity of Linux is finished, its priority
is decreased by postponing its absolute deadline to
d = d + P, and its capacity is recharged to ¢ = Q.
Since Linux is modeled as a non real-time pseudo-
task, it is always backlogged: the Linux pseudo-task
consists of a single job which arrives when the sched-
uler is initialized, and never finishes.

4 Implementation

We implemented the CBS in the RTAI UPscheduler.
Our main goal was to minimize the number of mod-
ifications to the original RTAI code and the preserve
the behavior of the fixed priority scheduler. In par-
ticular, the CBS tasks con coexist with fixed priority
tasks: they are scheduled at a specified priority level.
Currently, the CBS tasks are scheduled at the lowest
priority level: therefore, a regular fixed priority task
is not affected by CBS tasks. However, the priority
level of the CBS tasks can be easily configured.

We added two different policies, CBS_POL
and EDF PQOL, which can be set with
the rt_set_sched policy(RT_TASK *task, int
policy, int rr_quantummns) kernel primitive. If
policy = CBS_POL, the rr_quantumns represents
the CBS budget). The server period is set equal
to the task period, which can be set with the
rt_make periodic().

The CBS algorithm is implemented using the vari-
ables and functions already used by the round robin
scheduler. We added two fields in the RT_TASK struc-
ture: abs_dead that contains the absolute deadline
of the task, and that will be used for EDF schedul-
ing; start_time that is used internally to compute
the budget consumption. The server maximum bud-
get Q; is stored in rr_quantum, whereas the current
remaining budget g; is stored in rr_remaining.

In order to treat Linux as a CBS task, we added
a global variable task min prio, which represents
the task with the minimum priority and substitutes
rt_linux task. In fact, in the original RTAT sched-
uler, Linux was always the task with the minimum
priority, while in our algorithm Linux is treated as
any other CBS task.

The main modified functions are the ones used for
en-queuing and dequeuing from the ready and timed
queues, because they must implement the EDF pol-
icy.

Then, we modified the RR_YIELD to implement the
budget handling (CBS rule 2) and the deadline post-
poning (CBS rule 3). We added the function rt_
task_assign deadline() that implement rule (CBS
rule 1), and it is invoked by wake up_timed_task(),
rt_task resume() and rt_make periodic(). In the
timer handler (rt_timer handler()) we made some
slight modification, because Linux can be scheduled
as any other task, and hence can be selected also in
the timer handler.

The budget and period for Linux can be assigned
when inserting the RTAT scheduler module, through
the module parameters, and by an RTAI program
through functions void set_linux_period(RTIME
periodns) and void set_linux budget (RTIME
budget ns).

The patch to the RTAI scheduler is 444 lines long,
for a total of 11 kbytes.

5 Experimental evaluation

We validated the effectiveness of the proposed solu-
tion through an extensive set of experiments. In this
section, we present the most important results.

First of all, we verified the correctness of our CBS
implementation by running a set of time-consuming
CBS tasks and by checking that the generated sched-
ule matches the expected one. Once verified that
the scheduler is correctly implemented, we started
to schedule the Linux pseudo-task using a CBS, to
verify that it permits to avoid that real-time tasks
starve Linux applications, and to decrease the la-
tency experienced by Linux applications.

We run 3 time-consuming real-time tasks that over-
loads the system. Each one was served by a CBS
with utilization equal to 0.3, for a total load of 0.9.
Then we reserved a CPU bandwidth BY = 0.1 to
Linux and we verified that Linux processes can still
execute (in particular, a shell is still active), whereas
the 3 real-time tasks miss their deadline (because the
system is overloaded). If the 3 tasks are scheduled
using fixed priorities and Linux is scheduled in back-
ground, then Linux freezes.

To quantify the impact of the CBS on the latency
of Linux processes, we performed two sets of experi-
ments. In the first set, three periodic RTAT tasks 7y,
T9, and 73 periodically consume a fix amount of CPU
time. The parameters of the 3 tasks are shown in the
following Table. The total load of the three tasks is
0.8358. Since the load is less than 1, the system is
schedulable with EDF.

Task Cz Tz

1 6 msec 10 msec
Ty 2 msec | 17 msec
T3 3.9 msec | 33 msec

Task 75 sends a message containing a time-stamp
to a Linux process through a FIFO: we denote this
time-stamp by s; ;. The user process sleeps on the
FIFO until a new message arrives, then collects the
timestamps, and the instants in which they were re-
ceived: we denote these instants by 7; ;. In Figures
1 and 2, we show the jitter between two consecutive
arrivals minus the jitter between the two message
timesta.mps: (’I‘i’j—’I‘i’jfl)—(si,]‘—si’jfl). This quan-
tity is a measure of the “regularity” of the receiver:
ideally, it should be equal to 0.

100000

+ o+ + o+ + + o+ O o

80000

60000 i 4y b e b W gy W R R R e]

L R oM+ +

40000 B

Jitter (usec)

+ o+ R L +

e A A R U
+ T EER e te * + o+

-20000
0 100 200 300 400 500 600 700 800 900 1000

Packet number

FIGURE 1: User-Level Jitter when fized
priorities are used to schedule RTAI tasks, and
Linuzx is scheduled in background.

10000 T T T T T T T T

ko # tw f o4+t P + +
R i T T
g
50007++++ +4 +*+++++++ P R “ o4t o+
I o T IR R e et e YU
ik # + P R
e B S B S T L e
[¢
o
RS T s s S UUUR I S A S SRS S 30
0 faw %H 4o+ HH aH—Hy»* R tet FE 4 4w ++
g bt g T+
s

+
t»wﬂw ﬂfﬂﬂwwm% o **H* s Hm wmﬂwm +4 T s ey

5
2
g P -, + -+
s + 4* et e R 0T e IR N
2 + + PN * Tt
n 5000 | H + + o+ ++ T
R LR T R g T R TR R 4 e we]
- PR s [+ o4 4+
* + o+ o+t
-+ + + N +
-10000 o ot + + * + R
R
R
15000
0 100 200 300 400 500 600 700 800 900
Packet number
FIGURE 2: User-Level Jitter when RTAI

tasks and Linux are scheduled using CBS.

In Figure 1, we show the results obtained by us-
ing the fixed priority scheduler, with Linux in back-
ground. As you can see, the figure is quite irregular.
This happens because Linux is scheduled in back-
ground and it is difficult to know when it will be
scheduled next and for how long.

In Figure 2, we show the results obtained by us-
ing our scheduler. Linux has been assigned a pe-
riod PL' = 2 msec and a capacity Q% = 200 usec,
whereas each RTAI task is assigned a budget equal
to its computation time. This means that Linux will
be executed approximately 200 microseconds every
2 milliseconds. As a result, most of the values are
clustered around 0, because Linux is scheduled more
regularly.

It is important to underline that, by using our ap-
proach, all RTAT tasks finish before their next period
and there is no deadline miss. If a real-time task
needs a shorter deadline, it is possible to assign it a
shorter CBS period, such that it is guaranteed that
it will finish before its deadline.

2000

1800 4

1600 —

1400 4

1200 | . P]
f

Interarrival time (usec)

400 |- 4

200 - 1
¥

0 1 1 . 1 1 L 1 I
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Packet number

FIGURE 3: Interarrival times of the UDP
packets when no RTAI task is active

40000 T T T T T T T T T

35000 - + g
30000 - . . R
2 25000 | g
]
2
@
£
= 20000 i i 9
E
g
£ 15000 |- R R A e

o bt +wwww PR 1T R b W R e R

10000 Bussi sttt + Jr AR et St 4 J
F . B R
5000 I b+ TN b

L " 4 4

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Packet number

FIGURE 4: Interarrival times of the UDP
packets when RTAI tasks are scheduled using
fixed priorities

Thus, the better regularity of Linux applications
comes at no cost for the real-time task. In a sec-
ond set of experiments, we tried to see what hap-
pens when a Linux process needs to receive data from
the network with a bounded jitter. Two computers
are connected to a local network, one running pure
Linux with a user process that periodically sends
UDP packets; another computer running RTAI, and
a Linux process receiving the packets. We verified
that when no active RTAI tasks are present (Fig-
ure 4) the packets are received periodically (with
the same period at which they are sent). This re-
sult matches the one that can be obtained by using
a vanilla Linux kernel, or a patched kernel without
any RTAI module inserted.

Then, we activated three RTAI tasks that increase
the system load. Again, we raised to load to 90%,
and we measured the jitter experienced by the pack-
ets. When the fixed priority scheduler is used, the re-
sults are shown in Figure 3. As you can see, the jitter

is quite large, between 0 and 20 msec. Moreover, we
saw that some packet is missed. In fact, when Linux
is not executing, the packets are stored in the Eth-
ernet board buffer, and when the buffer fills-up the
packets are discarded. In this experiments we used
very short packets, therefore the number of packet
that can fit in the hardware buffer is high: how-
ever, when some serious data-tranfer is involved, the
buffer is filled-up by few packets, and the number of
discarded packets can increase.

In Figure 5 we show what happens by using our algo-
rithm. Since Linux is scheduled more regularly, the
jitter is much lower, between 0 and 6 msec. Again,
this comes at no cost for the real-time tasks: no RTAI
task missed its deadline during the experiment.

6000

. . . .
o, - +
e e I e
tmﬁ # wﬁiﬁﬂ e 13:#++t+ﬂbf
R A PR

5000 |

e e T e L

i L e Srasian et

4000 R 1+£+ et t*ﬁw?+ ﬁﬂﬁwﬁ i aras *E} i

T T R e I e S + g a s TURE I

ﬁ*ﬂ?ﬂtﬁﬂ%’?ﬁ*wﬁ e T s, +§*§I}§+Iy$*§ﬁﬂ
+

1 Ft, +
P e L T e B R et S e P e
3000

fote
P }?‘%;afg
:

Interarrival time (usec)

2000 3t T s P T L

‘s

B Skt e 2 b

T e Bl iy W&ww‘%ﬁ?ﬁ’y x3

e R
eI PGSR S e

A

++wg+ + mw¢
5 u

-y

i

1000

FIGURE 5: Interarrival times of the UDP
packets when RTAI tasks and Linux are sched-

uled by dedicated CBSs

2000

6 Conclusions and future work

In this paper we presented a mechanism for increas-
ing the responsiveness of Linux processes in RTAIL
The mechanism is based on a well-know paradigm
for mixing hard and soft real-time activities: the
resource reservation framework. In particular, we
implemented the Constant Bandwidth Server (CBS)
[1] in RTAI, and we assign a budget and a period to
Linux, which is then scheduled as any other real-time
task.

However, our implementation is not perfect, and
there are problems that needs to be solved. One
of the problems is the fact that the CBS algorithm
is work conserving and does not suspend a task that
has consumed its budget. This is very useful for re-
claiming unused bandwidth: however it can cause
problems to Linux. Suppose that the real-time tasks
execute for much less than expected: since Linux
is always active, it continuously exhaust its budget,
and its deadline is postponed many times. As a
consequence, soon Linux has a deadline very far in
the future, and it basically scheduled in background.

Hence, if the real-time tasks execute less than ex-
pected, sooner or later Linux goes in background.
To solve this problem, in the current implementation
we “anticipate” the Linux scheduling deadline each
time that this can be done without compromising
the system’s schedulability (this happens when all
the other tasks do not use all their reserved time). A
better solution, on which we are currently working,
would be to deactivate the Linux pseudo-task when
Linux schedules the idle task, and to reactivate it
when an interrupt has to be delivered to Linux.

Acknoledgements

This work has been supported in part by the IST pro-
gramme of the Commission of the European Commu-
nities, IST-2001-35102 (OCERA project).

References

[1] Luca Abeni and Giorgio Buttazzo. Integrating
multimedia applications in hard real-time sys-
tems. In Proceedings of the IEEE Real-Time
Systems Symposium, Madrid, Spain, December
1998.

[2] Chen Lee, Raj Rajkumar, John Lehoczky, and
Dan Siewiorek. Pratical solutions for qos-based
resource allocation. In Proceedings of the IEEE
Real Time Systems Symposium, Madrid, Spain,
December 1998.

[3] Chen Lee, Raj Rajkumar, John Lehoczky, and
Dan Siewiorek. Pratical solutions for qos-based
resource allocation. In IEEE Real Time System
Symposium, Madrid, Spain, December 1998.

[4] G. Lipari. Resource Reservation in Real-Time
Systems. PhD thesis, Scuola Superiore S.Anna,
2000.

[5] C. L. Liu and J. Layland. Scheduling al-
ghorithms for multiprogramming in a hard real-
time environment. Journal of the ACM, 20(1),
1973.

[6] Clifford W. Mercer, Raguanathan Rajkumar,
and Hideyuki Tokuda. Applying hard real-time
technology to multimedia systems. In Work-
shop on the Role of Real-Time in Multime-
dia/Interactive Computing System, 1993.

[7] Clifford W. Mercer, Stefan Savage, and
Hideyuki Tokuda. Processor capacity reserves
for multimedia operating systems. Technical Re-
port CMU-CS-93-157, Carnegie Mellon Univer-
sity, Pittsburg, May 1993.

(8]

[10]

Luigi Palopoli, Luca Abeni, Fabio Conticelli,
Marco Di Natale, and Giorgio Buttazzo. Real-
time control system analysis: An integrated ap-
proach. In Proc. of the Real-Time Systems Sym-
posium, Orlando, Florida, November 2000.

Ragunathan Rajkumar, Chen Lee, John
Lehoczky, and Dan Siewiorek. A resource al-
location model for qos management. In Pro-
ceedings of the IEEE Real Time Systems Sym-
posium, 1997.

Ragunathan (Raj) Rajkumar, Luca Abeni,
Dionisio de Niz, Sourav Ghosh, Akihiko

[11]

[12]

Miyoshi, and Saowanee Saewong. Recent devel-
opments with linux/rk. In Proceedings of the
Second Real-Time Linux Workshop, Orlando,
Florida, november 2000.

Raj Rajkumar, Kanaka Juvva, Anastasio
Molano, and Shuichi Oikawa. Resource ker-
nels: A resource-centric approach to real-time
and multimedia systems. In Proceedings of the
SPIE/ACM Conference on Multimedia Com-
puting and Networking, January 1998.

Dickson Reed and Robin Fairbairns (eds.).
Nemesis, the kernel — overview, May 1997.

