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Abstract

With the recent development of kernel patches for implementing kernel preemptability and high-
resolution timers and the acceptance of the first patch in the 2.5 development branch, it is now possible
to support real-time applications in Linux user-space. However, real-time applications must be ran using
the POSIX fixed priority scheduler, and we believe that this solution presents a number of problems. In
our opinion, a workstation OS must support temporal protection among applications, so that users can
access real-time scheduling facilities without the danger to starve the system. The Resource Reservation
framework is a class of techniques that can be used for providing temporal protection among different
real-time and non-real-time applications. Algorithms based on the Resource Reservation framework have
been implemented in a number of Linux variants (the most notable is Linux/RXK). In this work, we propose
a novel implementation that differs from the previous ones in some fundamental points. Thanks to the
particular reservation mechanism (the Constant Bandwidth Server - CBS) and to a careful design of our
scheduling infrastructure, our scheduler can correctly cope with aperiodic task arrivals.

1 Introduction

In recent years, there has been a great interest in
running new kind of applications characterised by
soft real-time constraints on desktop and general-
purpose Operating Systems (OSs). Typical exam-
ples are video conference and media streaming ap-
plications, software audio mixers, CD burners, etc.
These applications are characterised by implicit tem-
poral constraints that must be satisfied to provide the
desired Quality of Service (QoS). We refer to these
as time-sensitive applications.

To support time-sensitive applications, a general-
purpose OS must respect the application’s tempo-
ral constraints and hence a predictable schedule is
needed. This implies that low kernel latencies and
high-resolution timers are needed [6]. Nowadays,
effective patches for implementing high-resolution
timers [8] on Linux and for decreasing the Linux ker-
nel latency have been proposed. Thanks to these
patches, it is now possible to schedule real-time ap-
plications in user-space, guaranteeing their timing
constraints. However, the only scheduling support
for real-time activities provided by the Linux ker-
nel is given by the POSIX API, which provides fixed
priority scheduling.

Although fixed priority scheduling is an excellent so-

lution for implementing real-time activities in em-
bedded systems, it is not well-suited for soft-real-
time scheduling in general purpose OSs. Important
problems are the fairness and the security of such
schedulers. In fact, if a regular user (that has not
superuser privileges) is enabled to access the fixed
priority scheduler, a simple malicious denial of ser-
vice attack could be to activate a task at the highest
priority, which immediately goes into an infinite loop.
On the other hand, if only superusers are allowed to
access the real-time scheduling facilities, it is very
difficult to provide soft real-time guarantees to non-
privileged users. Moreover, even trusted users could
starve the system during debugging.

For these reasons, a real-time workstation OS should
support a scheduler that provides temporal protec-
tion: the temporal behaviour of a task should not be
affected by the other tasks in the system, enabling
all the users to access the kernel’s real-time facilities
without being able to starve the system. In our opin-
ion, temporal protection is as important as memory
protection, which is provided by all the most com-
mon OS kernels.

Resource Reservations [15] have been proven to be
an effective way for providing temporal protection.
The concept of Resource Reservation is not new, and
scheduling algorithms based on it have been imple-



mented in a number of Linux variants (the most no-
table is Linux/RK [18, 17, 16]). However, we be-
lieve that most of the previous implementations suf-
fer some problems, going from scheduling anomalies
caused by aperiodic activations to the lack of secu-
rity policies. These problems are not due to intrinsic
deficiencies of the resource reservation abstraction,
but they depend on the scheduling algorithm used
for implementing the reservation.

In this paper, we propose a novel implementation of a
reservation scheme in the Linux kernel, based on the
CBS algorithm [3]; our implementation fundamen-
tally differs from the previous ones in the following
aspects:

e it is non-intrusive,

e it permits to implement advanced security poli-
cies,

e it correctly copes with aperiodic activa-
tions/deactivations,

e and it takes particular care in maintaining
compatibility with standard Linux.

The remaining of the paper is organised as follows:
in Section 2 the addressed problems are described;
in Section 3, we explain our design goals; in Sec-
tion 4 we describe the implementation of our sched-
uler; in Section 5 the overhead and the performance
of the proposed implementation are evaluated; finally
in Section 6 we state our conclusions and we give
some insight about our future work.

2 The Problem

Real-time applications are characterised by temporal
constraints, which can be better described by consid-
ering a task ! 7; as a stream of jobs (or instances) J; ;.
We say that a job arrives when the task unblocks
(i-e., when it becomes ready for execution), and ter-
minates when the task blocks (because it must wait
some particular event before being ready for execu-
tion again); J; ; arrival time is denoted by r; ;, and
its finishing time is f; ;. The required computation
time of a job between its arrival and its finishing time
is denoted by ¢; ;. The worst case computation time
of a task is denoted by C; = max;{c;;}. Each job
Ji,j is characterised by a deadline d; j; we say that
the deadline is respected iff f; ; < d; ;.

If the tasks are periodic (i.e., if 7541 —ri; = T3
where T; is the task period) and their worst case exe-
cution time is known, the Rate Monotonic (RM) [13]

or the Deadline Monotonic (DM) [9] scheduling algo-
rithms can be used to guarantee that every task will
respect its deadlines if an admission test is passed.
For example, RM is guaranteed to generate a sched-
ule that respects all tasks deadlines if ), % < 0.692.
RM and DM scheduling are supported in Linux
through the POSIX fixed priority scheduler.
However, the fact that the real-time guarantee de-
pends on the estimation of the worst case execution
time of each task makes the system fragile respect
to errors in this estimate. If a task does not respect
its estimated worst case execution time, a different
task can miss its deadline; in other words, there is no
temporal protection between the tasks in the system.
Of course, this is not a problem in a safety critical
dedicated system, because all tasks are accounted for
at design time and if a worst case execution time is
wrong, then the whole system design may be wrong,
and must be corrected. On the other hand, in a desk-
top system, tasks are dynamically activated and we
cannot account for them at design time. A misbe-
having real-time task can jeopardise the schedulabil-
ity of other tasks (even worse, a user can affect the
QoS perceived by other users), and can starve all the
system’s tasks (denial of service).
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FIGURE 1:
Scheduling

A solution to this problem is given by Resource
Reservations, which provide temporal protection by
reserving each real-time task 7; an amount of time
Q; every period T;. Resource reservations are gen-
erally implemented by using an entity RSV; called
reservation to schedule a task 7;. Each reservation
RSV, is associated a budget ¢;, and is characterised
by the two parameters @; and T;. The budget ¢;
of reservation RSV; is decreased when 7; executes,
and when it arrives to 0 RSV; is said to be depleted.
At the beginning of the next reservation period, g;
is replenished to @;, and RSV; is said to be eligible.
When RSV is in the depleted state, 7; cannot be
scheduled, whereas when it is in the eligible state 7;
is scheduled based on some real-time priority assign-
ment, such as RM, DM, or Earliest Deadline First
(EDF) [13].

As an example of reservation scheduling, consider
Figure 1, representing the schedule generated by

Ezxample of Reservation

!In this paper, the term “task” is used to identify either a process or a thread.
2This is just a sufficient admission test. More complex tests can be used to provide less pessimistic (or even a necessary and

sufficient) guarantee.



two reservations RSV; and RSV, with parameters
Q1 =4,T, =38, Q> = 3, and T, = 6 when 7
and 75 are always ready to be executed. The under-
lying scheduling algorithm is EDF. At time 0 both
tasks are ready for execution, and both the reserva-
tions have a budget ¢; > 0; 7» is scheduled because
RSV, has a shortest deadline than RSV; (remember
that the underlying scheduling algorithm is EDF).
At time 3, ¢o arrives to 0, hence RSV; is depleted
and 75 cannot execute until time 6; as a result, 7
is scheduled. At time 6, ¢, is recharged, RSV; be-
comes eligible, and 75 can be scheduled, but it does
not preempt 71 because RSV;’s deadline (8) is short-
est than RSV5’s one (12). At time 7, ¢; = 0, hence 7
is depleted, 75 is scheduled, and so on. The schedule
shows that both the tasks always receive the reserved
amount of CPU time.
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FIGURE 2: Scheduling Anomaly in a
Reservation System

The reservation concept has been proven to be very
effective and useful [14, 15, 18, 3], but the most com-
mon implementations (based on an abstraction sim-
ilar to the Deferrable Server [20]) are not able to
provide full temporal protection in some cases.

For example, consider Figure 2, which shows the
schedule generated by the system of Figure 1 if 7
is not ready for execution (for example, because it is
blocked by a blocking system call) at time 16, when
RSV1 becomes eligible. Since at time 17 75 is de-
pleted and 7 is not ready for execution, the CPU
is idle between 17 and 18, when 71 becomes ready.
Hence, 7; starts to execute at time 18 and contin-
ues until time 22, when its capacity arrives to 0 and
71 is depleted. At this point, 75 can execute, but it
is not able to get all the 3 reserved units of CPU
time before time 20. Hence, the temporal protection
is broken. This is a very well known problem in real-
time literature, and is due to the use of a Deferrable
Server mechanism for implementing reservations.
Another problem with traditional implementations
of resource reservation is that a task can consume all
the CPU by issuing malicious requests with a par-
ticular pattern: it creates a reservation, then uses
it until an instant before the depletion, destroys it,
creates a new one, and so on. Again, the task could
consume all CPU time starving all the other tasks.

Similar problems may occur when periodic tasks are
scheduled in a reservation system. In fact, a peri-
odic task 71 with worst case execution time C; and
period T; is guaranteed to respect all its deadlines if
it is scheduled by a reservation RSV; with the same
period of the task and Q; > C;. However, this is true
if and only if 7; and RSV, are synchronised, that is
to say if tasks arrivals happens exactly at the be-
ginning of reservation periods. If this condition is
not verified, the condition for ensuring the schedu-
lability of 7; is way more pessimistic than @Q; > C;.
Moreover, it may happen that 7; is not ready for ex-
ecution (because a job is finished and the next one
is not arrived yet) when the budget of its reservation
is replenished, and temporal isolation may be com-
promised. Hence, synchronising a periodic task with
its reservation results to be fundamental for ensuring
the correct behaviour of the system. However, such
a synchronisation is not easy to achieve, and is an
open issue in a lot of reservation systems.

Finally, reservation systems can be dangerous if a
proper policy for controlling the amount of resources
allocated to user tasks’ is not used. In fact, an
user could allocate almost all the CPU time to some
greedy process which never releases the CPU (be-
cause of an error or because of a malicious be-
haviour). As a result all the other processes in the
system would hardly have a chance to execute; since
the correct behaviour of a Linux box depends on the
execution of some daemons, starving them would be
particularly dangerous. In multiuser systems, there
are even more issues, because a single user would be
allowed to acquire the complete control of all the sys-
tem time, avoiding the execution of root’s processes.
Most of the existing reservation system generally per-
form an admission test when a reservation is created,
to check that it will not compromise system schedula-
bility. However, this admission test does not address
the security issues highlighted here.

3 Design of the Scheduler

Our reservation-based scheduler was explicitly de-
signed for solving the problems presented by tradi-
tional reservation systems presented in Section 2. In
particular,

1. we use a sophisticated scheduling algorithm,
based on the Constant Bandwidth Server
(CBS) [3] to avoid problems with aperiodic ac-
tivations

2. we designed the scheduler so that it requires
minimal modifications to the kernel

3. we provide hooks in the scheduler for imple-
menting advanced security policies.



3.1 The Constant Bandwidth Server

The Constant Bandwidth Server (CBS) is an efficient
service mechanism developed for implementing CPU
bandwidth reservations in a dynamic priority system
(based on EDF scheduling). Each task 7; is assigned
a dynamic scheduling deadline df (not to be confused
with the job’s deadline J; ;) by a server S;; then, it is
inserted in an EDF queue, ordered according to the
scheduling deadlines. The server assigns scheduling
deadlines to jobs so that each task is reserved an
amount of CPU time @; every server period T .

We will now briefly describe the rules of the CBS
algorithm. The interested readers can find more de-
tails in [3].

e Each server S; is characterised by an ordered
pair (Q;,T7), where @; is the maximum bud-
get and T is the server period. The ratio B; =
Qi/T; is the server bandwidth. The server
maintains two internal variables, the current
remaining budget ¢; and the dynamic schedul-
ing deadline df. At the beginning df = 0.

o If 7; is served by S;, then each job J;; is as-
signed a scheduling deadline equal to the server
deadline d;.

e the job with the earliest scheduling deadline is
selected to execute, according to the EDF pol-

icy.

o Whenever a served job executes, the budget g;
is decreased by the same amount.

e When ¢; = 0, the server budget is recharged at
the maximum value (); and the server deadline
is postponed by T7: d°* = d° + T7. The EDF
queue is update accordingly.

e When a new job J; ; arrives (i.e., when 7; un-
blocks) at time 7; ;, if g; > (df —r; ;) %, then a
new scheduling deadline di = r; ; + f’f is gen-
erated, and ¢; is recharged to the maximum
value @);, otherwise the job is served with the
last server deadline d] using the current bud-
get.
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FIGURE 3: Exzample of CBS Scheduling

The CBS algorithm is work-conserving (i.e., the CPU
is never idle if there is at least a task ready to exe-
cute), can correctly cope with aperiodic activations,
and provides good performance, as shown in [3]. Fig-
ure 3 shows how the CBS solves the problem high-
lighted in Figure 2: when 7 arrives late at time 18,
the server deadline is set to df = 18 +8 = 26, s0 7y
scheduling deadline (26) is greater than 7» schedul-
ing deadline (24). As a result, 73 is scheduled at time
18, and temporal protection is preserved.

3.2 The Scheduling Module

According to the definition of the CBS algorithm, the
scheduler must intercept job arrivals (i.e., task un-
blockings) and job terminations (i.e., task blockings).
Moreover, the scheduler must know when tasks are
created and destroyed. To minimise the amount of
modifications needed to the kernel, we decided to
export all these relevant events to a CBS scheduler,
which then decides the task to schedule and com-
municates to the kernel scheduler which task to dis-
patch.

In this way, the CBS scheduler has been implemented
as a loadable module that can be inserted into the
kernel at runtime, and most of the scheduler code
is independent from the kernel version. Hence, it is
very easy to port our CBS implementation to new
Linux versions, and to use it in combination with
other kernel patches that provide useful features for
real-time applications. For example, the CBS mod-
ule can be used in combination with the high-res-
timers patch [8]: as a future work, we are planning
to test our implementation with the kernel preempt-
ability patch.

3.3 Security

We decided to export the CBS scheduling facili-
ties through the standard sched_setscheduler()
syscall, by adding a new scheduling policy SCHED_CBS
and by extending the sched_param structure. This
solution implies that the CBS module must “inter-
cept” setscheduler calls (see Section 4 for more de-
tails). Since this system call must already be inter-
cepted, we decided that this is the appropriate place
for performing security checks.

In particular, the scheduling module does not per-
form any admission test at all, and a different secu-
rity module can intercept the proper calls and im-
plement the acceptance policy. We believe that two
alternative solutions are possible:

1. The security module permits the creation of
reservations (that is, setting the scheduling pol-
icy of a process to SCHED_CBS) only to a partic-



ular user (for example a superuser, or a priv-
ileged user). A user level daemon having this
user’s rights will be responsible for the security
tests and the schedulability tests.

2. The security module implements the security
policy (and the schedulability test) itself.

We decided to implement both solutions, providing
two different security modules.

4 Implementation

The CBS scheduler has been implemented as a load-
able module that, once inserted into the kernel,
enables a new scheduling policy SCHED_CBS. This
scheduling module intercepts the scheduling events
described in Section 3.

To intercept these events, the module must be
inserted in a patched kernel, which exports 6
hooks: fork hook, cleanup hook, block hook,
unblock hook, setsched hook, and getsched_hook.
For every hook, the patched kernel contains a func-
tion pointer that is exported to be used by loadable
modules. All the pointers are initially set to NULL,
and when the CBS module is inserted it sets these
pointers to its handlers, so that the kernel will in-
voke the proper handler when a specific condition
happens:

e the fork_hook is invoked when a new task is
created;

e the cleanup_hook is invoked when a task is
destroyed, so that the CBS scheduler can deal-
locate the resources associated to it;

e the block_hook is invoked when a task blocks,
so that the CBS module understands that the
current job is finished;

e the unblock hook is invoked when a task wakes
up, so that the CBS scheduler is notified of a
new job arrival;

e the setsched hook and getsched hook are
invoked when the sched_setsched() or
sched _getsched() system calls are called. If
the hook function returns a negative value, the
system call must fail; if it returns 0, the sys-
tem call succeeds and returns a success value;
whereas if the function returns a positive value
the original Linux system call code is executed
as a fallback.

All' the hooks but setsched hook and
getsched hook receive the pointer to the

task_struct of the interested task as a param-
eter (setsched hook and getsched hook have
the same parameters of sched_setsched() and
sched _getsched()). Finally, the kernel patch adds
a field to the task_struct structure, representing
a pointer to void which can be used by the CBS
scheduler to point to the CBS private data for each
task (current budget, server parameters, deadline,
and so on).

Based on the described patch, the CBS scheduler can
be easily implemented: in fact, there is a clear rela-
tionship between the hooks provided by the patch
and the description of the CBS algorithm given in
Section 3.

For example, the unblock_hook, corresponding to a
job arrival, is implemented as follows: first of all,
the test ¢; > (df — ri,j)% is performed, updating
d? and g; if needed (the server deadline is implicitly
assigned to the task). Then, the unblocked task is
put in the EDF queue, and if it results to be the
first of the queue it is scheduled. When scheduling
the new task, the budget of the descheduled task
(if any) is updated, and a depletion timer is set to
fire when the newly scheduled task will exhaust its
budget. Figure 1 shows the code for unblock_hook®:
after acquiring a spinlock for protecting the sched-
uler code, the time is read, and a function imple-
menting the described algorithm is invoked. Note
that t->deadlineis d, t->max_budget_clockis @,
t->period_clockis T, and t->c is g;.

The cbs_schedule() function will dispatch the
scheduled task. Since we decide not to modify the
original Linux scheduler, the module forces the dis-
patch of a task by setting its policy to SCHED_FIF0
or SCHED.RR, and setting the rt_priority field in
its task structure to the maximum Linux real-time
priority + 1 (100).

Note that in our implementation the scheduling al-
gorithm does not depend on tasks’ periodicity: in
fact, the scheduler directly intercepts tasks’ activa-
tions/deactivations, and implementing a periodic be-
haviour is the tasks’ responsibility. For example, the
setitimer () syscall or POSIX timers [8] can be used
for triggering periodic activations.

During the scheduler’s development and debugging,
we implemented a scheduling tracer, which also re-
sults to be an invaluable tool for system design. Be-
cause of the particular design of the scheduler, adapt-
ing general-purpose tracers like LTT [24] to our needs
resulted to be difficult, hence we decided to develop
a little tracer from scratch. The tracer provides its
output through a device file, and a simple cat com-
mand can be used for generating a trace file, which

3note that all the debugging, logging, and tracing calls have been removed to simplify the code.



int cbs_activate(struct cbs_struct *t, unsigned long long r)

{

}

/* CBS test: ¢ > (d - r) * U -———> New deadline */

if ((t->c > 1limd(t->deadline - r, t->max_budget_clock,

/* Generate new deadline */
t->deadline = r + t->period_clock;
t->c t->max_budget_clock;

}
if (edf_list_add(t)) {
/* We just modified the head of the queue... */
if (exec) {
if (update_used_time (exec,
update_priorities(exec);
}
} else {
last_update_time
}

cbs_schedule(r);

r)) {

r;

}

return 1;

void generic_request(struct task_struct #*t)

{

unsigned long flags;
unsigned long long int time;

spin_lock_irqsave(&generic_scheduler_lock, flags);
if (t->private_data != NULL) {
time sched_read_clock();
cbs_activate(t->private_data, time);

}

t->period_clock)) || (t->deadline < r)) {

spin_unlock_irqrestore(&generic_scheduler_lock, flags);

Figure 1: Handling job arrivals in the CBS module.

can be displayed using a portable visualisation pro-
gram written in Java.

As introduced in Section 3, a task can create a reser-
vation by using sched_setsched() to change the
scheduling policy to SCHED_CBS. The CBS module
intercepts this call through setsched hook, hence a
security module can easily implement a security pol-
icy by modifying the setsched hook to call a different
handler. When the setsched handler provided by the
security module is invoked, it enforces the security
policy, returning —1 if the security check fails, and
invoking the setsched handler of the CBS module if
the security check is passed.

This approach for implementing security modules is
similar to the one used by LSM (Linux Security Mod-
ules) [1, 23], which uses hooks in the kernel for im-
plementing security policies.

We developed two different security modules, based

40f course, a special user can also be created for this purpose

on the two ideas introduced in Section 3. The first
module tries to move the policy to user space (leav-
ing only the mechanism in the kernel). In practice,
every time that a user tries to create a reservation,
the security module checks if the user has root priv-
ilege. If not, the sched _setscheduler() call fails?.
This is the same mechanism regularly used by Linux
to protect POSIX fixed priorities. A user level task,
running with root privileges, will be in charge of im-
plementing the security policy, by receiving users’
requests (through a Unix socket, or a named pipe),
deciding if they are acceptable, and eventually per-
forming the proper system call.

The first solution has the advantage that the user
level daemon can be controlled through a configura-
tion file (living in the /etc directory) to fine-tune
the implemented policy. On the other hand, it is



probably less secure, because attacking an user level
daemon can be easier than breaking a policy imple-
mented at kernel level.

Hence, we implemented a second module, which di-
rectly implements the security policy in kernel space.
This solution is obviously less flexible (the kernel
module cannot parse a configuration file), but we
expect it to be more secure. As an example, we
implemented a very simple policy, allowing an user
to create a reservation if ). tasks % < 1 and

2_non root tasks % < B™?, with B™** <1 (note
that since we were 1going to implement an admission
test for security reason, we included the schedulabil-
ity test in it).

5 Experimental Evaluation

In this section, we present an experimental evalua-
tion of our reservation-based scheduler. First of all,
we show that the hooks introduced in the kernel do
not affect the system performance. Then we show
that even when the CBS module is inserted in the
kernel, the regular Linux scheduler does not degrade
its performance, and we evaluate the overhead intro-
duced by our scheduler.

After that, we show the behaviour of the CBS sched-
uler, by using our scheduling tracer. Finally, we eval-
uated the performance of our CBS implementation,
and we show its effects on real applications.

All the experiments were performed on a Pentium
166 with 16MB of RAM.

5.1 Overhead Measurements

We used the LMBench [22] test suite to compare the
performance of a vanilla 2.4.18 Linux kernel with the
performance of the patched kernel.

First of all, we performed the comparison with a
kernel having the hooks in place but no scheduling
module inserted. We repeated 50 runs per kernel,
and the results showed that no sensible variations
in the performance can be noticed. After that, we
repeated the experiments with the CBS scheduling
module inserted in the kernel, obtaining similar re-
sults. Table 1 shows the numbers.

Finally, we instrumented our scheduling module,
to measure the amount of time taken by the
most important hooks (that are block hook and
unblock hook). We ran a workload composed of
tasks that continuously sleep for 10ms, each one han-
dled by dedicated CBSs, and we found out that after
1 day, the maximum time needed for a block hook
execution was 8us, and the minimum was 2us. The

execution time of unblock_hook had a maximum of
17ps and a minimum of 5us.

5.2 Trace of the schedule
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FIGURE 4: Schedule visualisation with the
tracer

We tested the functionality of the scheduler by using
our tracer program. As a first experiment, we cre-
ated several time consuming tasks (that never release
the CPU), scheduled through CBSs with @ = 10ms
and T° = 200ms. By analysing the amount of time
executed by each task, we verified that they shared
the CPU fairly. We also varied @Q); and T}, verifying

that if )", % < 1 each task executed for a fraction

Qi of the CPU time.

Fiinally, we performed some other runs using our
tracer to check that the produced schedule matched
with the expected one. For example, Figure 4 shows
a snapshot of the trace produced by two time con-
suming tasks 7 and 7» scheduled by two servers with
parameters Q; = 20ms, T = 60ms, Q2 = 30ms,
and T3 = 100ms.

5.3 Performance Evaluation

After evaluating the impact of our scheduling module
on regular Linux applications and verifying the cor-
rect behaviour of the CBS scheduler, we performed
some experiments to show the effectiveness of our
CBS module in providing a controllable QoS to user
applications.

As a test application, we selected mplayer [12], an
advanced media player application that is able to re-
produce many different audio/video formats and to
perform accurate audio/video synchronisation.
First of all, we proved that the standard Linux sched-
uler is not adequate for managing concurrent time-
sensitive applications: we ran two simultaneous in-
stances of mplayer, each of which playing a video
stream at 25 FpS (Frames per Second) and requiring
about 32ms to decode a frame®. Hence, each player

5the frame decoding time is not constant; 32ms is an approximate estimation of the average time.



NULL | NULL | Fork 2p/0K | 2p/16K | 8p/16K | Pipe
Kernel Call I/0 Process | ctxsw | ctxsw ctxsw Latency
Vanilla Linux 0.87 1.9040 | 1512.2 | 8.4340 | 81.400 | 98.300 | 29.800
Linux with hooks 0.87 1.8670 | 1523.8 | 8.5790 | 80.400 | 92.100 | 30.400
Linux with CBS module | 0.87 1.8600 | 1525.7 | 8.7460 | 81.200 | 96 30.600

Table 1: Summary of LMBench results for vanilla Linux kernel, patched kernel without any scheduling mod-
ule inserted, and patched kernel with the CBS scheduling module inserted. The table shows the mean value

of 20 runs (all the confidence intervals are under 10%)

can be modelled as a periodic task with execution
time 32ms, period 1000/25 = 40ms, and utilisation
32/40 = 0.8 (each player requires a fraction of 0.8 of
the CPU bandwidth). Since 0.8 + 0.8 = 1.6 > 1, the
system is overloaded and it is not able to satisfy each
task’s temporal requirements. We decided to quan-
tify the QoS perceived by a player by measuring the
difference between the time when a frame is played
and the time when the previous one was player. We
call this quantity the Inter-Frame Time (IFT). The
IFT of a player should ideally be constant and equal
to the player period (i.e., 1/FpS).
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FIGURE 5: Inter-Frame Times for the

first player, when both the two players are
scheduled using the standard Linuz scheduler.

Standard Linux Scheduler
160000 T T T T

Taska  +

140000 —

120000 - 1

o
2
@ 100000 R —
3 M . + t, 4 + +
2 Lt . + + -
R

& + AT + + 4

80000 - .+ . i + O E
® + + R
E e ++ L * e N t++ ot +++¢ ++ + *:;
<4 + + &
i B, oy it ++¢w+w R
P e {7’*‘* e o +#{:‘ﬁ e ]
2

#
R
+ e, Tt s
A e f*»ﬁ*‘*‘r***ﬁ” R e Pl
b + ‘
A L +t,+++ ‘:#
40000 - ¥ A +
s .

20000 4 4

0 L L L L L L L L
0 50 100 150 200 250 300 350 400 450

Video Frame Number

FIGURE 6: Inter-Frame Times for the sec-
ond player, when both the two players are
scheduled using the standard Linuz scheduler.

Figures 5 and 6 plot the IFT for the two tasks, show-
ing that none of the two tasks is able to get the ex-
pected QoS (in fact, both the two tasks have IFTs
greater than 1/FpS = 40ms).

CBS Scheduler
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FIGURE 7: Inter-Frame Times for the
first player, scheduled by a CBS with Q =
32ms and T = 40ms.
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FIGURE 8: Inter-Frame Times for the sec-
ond player, scheduled by o CBS with Q = 4ms
and T = 40ms.

The CBS scheduler can help to control the IFT of
each player, by reserving a different fraction of the
CPU bandwidth to each task. For example, we can
schedule the two players with two servers having pa-
rameters @1 = 32ms, 17 = 40ms, Q2 = 4, and



T = 40ms to control the IFT of 71 to 40ms. Since
the players depend on the X server for displaying the
video output, we scheduled the X server through a
CBS with parameters ), = 1lms and T; = 20ms.
This solution is similar to the PCP protocol [19] for
managing the server (which is a shared resource);
see [10] for more details.

The results of this second experiment are shown in
Figures 7 and 8: after an initial transient (until about
frame 120) in which the IFT is very stable because 71
is the only CBS task in the system, 75 starts and the
IFT of 1, is affected by the second CBS, but is still
controlled around the desired value: the variation in
the IFT is never bigger than the player period.
Obviously, since the system is overloaded it is not
possible to control the IFT of both the task, and 7
does not obtain the desired QoS. In fact, when = is
active (until frame 50 of the second player), the IFT
of 7 is completely out of control. By changing the
scheduling parameters of the two CBSs, it is possi-
ble to control the number of deadline misses of each
player, giving more importance to the first or to the
second.

It can be easily seen that assigning the correct pa-
rameters to the two CBSs is not an easy task, since it
heavily depends on the system, on the tasks, and on
the input data (in this case, the media to be repro-
duced). However, such assignment is out of the scope
of this paper; we plan to use feedback techniques for
performing a correct assignment.

6 Conclusions and Future

Work

In this paper, we described a new approach to reser-
vation scheduling in Linux, and we presented our im-
plementation of the CBS algorithm (a reservation al-
gorithm based on EDF).

Our implementation differs from the previous
ones because it can cope with aperiodic activa-
tions/deactivations, it is well-integrated in Linux
without requiring big modifications to the kernel,
and it provides hooks for implementing security poli-
cies. The CBS scheduler is currently alpha qual-
ity software. It is released under the GNU Pub-
lic License (GPL) [11], and can be dowloaded from
http://hartik.sssup.it/ " luca/cbs. Everyone is
welcome to download and give us some feedback.
This work has been developed in the context of the
OCERA project [2], and our final goal is to provide
full support for QoS sensitive and adaptive applica-
tions on Linux. Of course, providing resource reser-
vations is only a first step in such direction: once
the kernel provides reservations, and the possibility

to precisely allocate resources to user tasks, a user
level QoS Manager must be implemented.

We are currently designing a QoS Manager that will
use the CBS scheduling module for reserving a frac-
tion of the CPU bandwidth to each QoS sensitive
application, and will use advanced resource alloca-
tion policies for determining the correct fraction of
the CPU bandwidth to be allocated to each task.
We expect that adaptive and feedback scheduling
techniques [4, 21, 7] will result to be very effective.
A prototypal implementation of the QoS manager
has already been implemented on the HARTIK real-
time kernel [5], and a porting has been tested on
Linux/RK [17]. We believe that porting it to Linux
+ our CBS scheduler will be fairly easy, and will en-
able further research in the field of adaptive schedul-
ing.
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