
ON THE ETHERNET USE FOR REAL-TIME PUBLISH-SUBSCRIBE BASED
APPLICATIONS

Ondrej Dolejs
Czech Technical University in Prague

FEE, DCE, Center for Applied Cybernetics
Karlovo nam. 13, 121 35 Prague

Czech Republic
xdolejs@fel.cvut.cz

Petr Smolik, Zdenek Hanzalek
Czech Technical University in Prague

FEE, DCE, Center for Applied Cybernetics
Karlovo nam. 13, 121 35 Prague

Czech Republic
xsmolik ,hanzalek @fel.cvut.cz

Abstract

Ethernet is very attractive for the automation area
due to its availability and low implementation cost.
Because of its media access control (CSMA/CD),
Ethernet is not deterministic in general and its
behaviour under transient overload is not sufficient for
any real-time application. On the other hand, if the
applications have predictable and bounded number of
requests, behaviour of Ethernet is “nearly” real-time
(very low probability of delayed data delivery).

This article tests ORTE (Open Real-Time Ethernet),
an open-source implementation of RTPS middleware
(Real-Time Publish-Subscribe), built upon UDP/IP and
tested on Ethernet. This middleware can be used in real-
time control applications, which typically have limited
and relatively small input load compared to the high
bandwidth. To derive the influence of the operating
system, we combined the application response time
measurement with the simulation.

1. Introduction

Ethernet was designed for computer networks in 70’s
without any real-time requirements and it was
normalised later as IEEE 802.3 standard. Today,
Ethernet is widely spread in office computer
communication, which implies high availability and low
implementation cost of Ethernet based solution.
Therefore Ethernet is very attractive for the automation
area due to high performance and wide diagnostics
possibilities (using several protocols simultaneously
running on the same medium).
Distributed real-time applications have two main
requirements for data delivery: time determinism and
reliability. Ethernet in general is not deterministic due
its media access control (CSMA/CD) and therefore its
behaviour under transient overload is not sufficient for

any real-time application. On the other hand, if the
applications have predictable and bounded number of
requests, the behaviour of Ethernet is “nearly” real-time
— the probability of the delayed data delivery is very
low [6] due to the reasonably low number of accesses
compared to the high-bandwidth performance.
Widely used and popular protocol TCP/IP is reliable,
but it cannot provide time determinism. The number of
retried packets is not predictable and causes the time
non-determinism. The UDP/IP protocol is better suited
for distributed real-time applications, since it is
deterministic (in the sense of packet retransmission).
The UDP/IP needs to be combined with an upper layer,
which provides packet retransmission suited for control
applications due to the UDP/IP’s insufficient reliability.
Several communication protocols using Ethernet for
automation came up in the last years. Some of them are
built on the top of TCP (Modbus TCP, ProfiNet v.1.2),
some on the top of UDP (NDDS - Network Data
Delivery Service, Modbus UDP) and some are built
directly on Ethernet (PowerLink, ProfiNet v.2). NDDS
middleware [4] is commercial implementation of RTPS
(Real-Time Publish-Subscribe) protocol, see [3]. ORTE
(Open Real-Time Ethernet), our open-source
implementation of the RTPS specification, is an
alternative to NDDS built on the top of the UDP/IP
protocol and tested on Ethernet, freely available at
(http://sourceforge.net/projects/ocera), see [7].
PowerLink, developed by Bernecker&Rainer company,
is a proprietary real-time protocol built directly on the
top of the Ethernet link layer. This protocol use the
Time-Division scheme for data delivery, where every
node has a time-slot to send its data to avoid the
collisions on Ethernet.
The problem of the data delivery probability estimation
for NDDS can be partially solved by analytical methods
using probability calculation [6] or by experimental
results as is in [5] and [10].

This article tests ORTE (Open Real-Time Ethernet), an
open-source implementation of RTPS middleware
(Real-Time Publish-Subscribe), built upon UDP/IP and
tested on Ethernet. To derive the influence of the
operating system, we combined the application response
time measurement with the simulation.
This paper is organized as follows. Section 2 deals with
the basics of the Ethernet behaviour and it shows
application response time, which is a crucial parameter
for real-time applications. A simulation approach is
used in Section 2, since it offers more flexibility,
especially for large networks. Section 3 explains the
Real-Time Publish-Subscribe (RTPS) protocol, and
shows a simple application of ORTE, our open-source
implementation of RTPS. Section 4 focuses on the
experimental results measured on a given configuration.

2. Preliminaries on Ethernet

The time analysis of the real-time behaviour of Ethernet
and IP was done in [6]. The CSMA/CD (Carrier Sense
Multiple Access/Collision Detection) is a well known
media access method (MAC) used by Ethernet (IEEE
802.3). A collision can arise when at least two waiting
nodes want to send data at the same time. These two
transmission attempts are usually accumulated during
the previous channel activity. The probability of N
collisions in this configuration is given as follow:

..
5
1

3
1

12
1

1

××=
+

=∏
N

nerrP

At the first attempt, two nodes choose randomly a
number from the range {0,1,2}. Therefore the
probability that they choose the same number is 1/3. If a
collision occurred, the range is doubled, and the nodes
can choose from 5 numbers {0,1,2,3,4}. The range is
doubled several-times (at most 10 times). The range is
interval of integers from 0 to 2n. This mechanism is
known as exponential back-off. The back-off delay is
equal to the chosen random number multiplied by the
slot time. In Ethernet the slot time is 51,2 microseconds
for 10Mbit/s and 5,12 microseconds for 100Mbit/s.
With this knowledge it is possible to count the
probability and the time for different numbers of slots.
From the real-time point of view a critical situation
occurs if the communication time exceeds some given
deadline (real-time error). The deadline can be
expressed as a function of N, since the communication
time is composed of the time spent for the media access
and a constant packet propagation delay. Subsequently
Perr, the probability of the real-time error occurrence, is
approximately equal to the probability of N collisions,
where N is the minimum number of collisions needed to
exceed the deadline. There is another drawback of
Ethernet making it unsuitable for hard real-time
applications - the packet dropping after 16 unsuccessful

attempts to access the bus. On the other hand, Ethernet
can be used for large group of soft real-time
applications, where e.g. the loss of packet, containing a
periodically sampled temperature is not crucial for the
system behaviour.
In the rest of this article, we have used simulation in
OPNET and experiments as an alternative to analytical
analysis of Ethernet behaviour [2]. The OPNET
simulation software is based on a series of hierarchically
related editors, e.g. Network, Node and Process editors
that directly model the structure of actual networks.
This simulation software enables simple changes in the
network configuration, e.g. the number of nodes, the
bandwidth, and the packet size.
Figure 1 shows a configuration of 10 sending nodes and
one receiving node connected via Ethernet (100 Mbit/s)
to a hub. This configuration was chosen only to achieve
the necessary input load. The same application is
running in each sending node and it generates the
required input load [packet/s], which is defined [2] as a
sum of all packets send by application to the lower
layers. The packet length is equal to 128 bytes, which is
a sufficient length in communication among sensors,
controllers and actuators.

Figure 1 Simulation configuration

Figure 2 illustrates a histogram for simulations of six
different input loads for the configuration shown in
Figure 1. Thus it shows a distribution function of a
communication time (consisting of the media access
time and transmission time). The distribution function is
important for real-time control applications, since one
can simply derive the count of packets exceeding a
given deadline.
For lower values of the input load (up to 30000
packets/s, i.e., each of 10 sending nodes transmits 3000
packets/s) the communication time of all packets is in a
very tight interval of around 100 µs. For the input load
of 40000 packets/s, the communication time of
considerable part of packets is still around 100 µs, but
there are also packets with communication time of
around 2ms. For the input load of 50000 packets/s, the
communication time is distributed in a rather wide

interval from 1ms to 20ms, and for 66666 packets/s the
communication time ranges from 10ms to 1s.
Roughly speaking, it is clear that 100Mbit/s Ethernet
can be used up to the input load of 30000 packets/s for a
large set of real-time control applications. Further test
are in [11].

10
20

30
40

50
60

10
-4

10
-2

100

0

20

40

60

80

100

120

140

160

180

communication time [s]

Communication time -simulated

packet rate [1000 pckt/s]

C
ou

nt
 o

f p
ac

ke
ts

 [-
]

Figure 2 The communication time
histogram in relation to Input-load

3. Real-Time Publish-Subscribe protocol

Real-time applications require more functionality than is
provided by the traditional publish-subscribe semantics.
Real-Time Publish-Subscribe protocol (RTPS) [3] adds
publication and subscription timing parameters and
properties so that the application developer can control
different types of data flows and therefore the
application's performance and reliability goals can be
achieved.

Figure 3 Publisher parameters

The timing parameters, shown in Figure 3 and Figure 4,
have the following meaning. Publication parameters
(see Figure 3): topic (name of publication) and type
(message type) identify a specific publication; strength
is the relative weight (priority) of the publication
compared to the publications of the same topic and type;
persistence specifies how long a publication is valid.
When the persistence elapses, the subscriber takes the
first received publication.
Subscription parameters (see Figure 4) topic & type
identify a specific publication; no new publication is

accepted during minimum separation time; deadline
specifies how long a new publication is expected. When
the deadline for the data delivery is passed without
receiving any publication, then the application is
informed (timeout notification). The user can set all
parameters to fulfil the application requirements.

Figure 4 Subscriber parameters

3.1. ORTE implementation
The open source implementation of the RTPS protocol
has been done at the Czech Technical University in
Prague as one result of the OCERA project [9].
Although the object concept of RTPS would be ideal for
an object oriented programming language such as C++,
the final ORTE implementation is done in C language,
since it allows simple porting of ORTE to different
operating systems, mainly those with the real-time
behaviour. Figure 5 and Figure 6 show how simply
ORTE can be used.
In order to exchange user data, the application must
create publications of its variables. An application
willing to receive publications of published data must
create a subscription. Properties of the publication and
the subscription contain specifications of Topic and
Type, which specify an application variable within
whole network. It is allowed to have more publications
of the same Topic and Type (see Figure 5).

ORTEPublication *p;
NtpTime persistence, delay;
ORTEInit();
d = ORTEDomainAppCreate(ORTE_DEFAUL_DOMAIN,
NULL, NULL, ORTE_FALSE);
if (!d)
ORTETypeRegisterAdd(d, "HelloMsg",NULL,

NULL,64);
NTPTIME_BUILD(persistence, 3);//is valid for 3s
NTPTIME_DELAY(delay, 1);
p = ORTEPublicationCreate(
 d, // pointer to application object
 "Example HelloMsg", // name of topic
 "HelloMsg", // data type description
 &instance2Send, // output buffer
 &persistence,// persistence of publication

 1, // strength of publication
 sendCallBack,//pointer to callback function
 NULL,//user parameters for callback

 &delay);// period for timer, callback

Figure 5 The skeleton of the ORTE publisher

The subscribing application needs to create a
subscription with publication’s Topic and Type. A
callback function is called whenever a new publication
from the publisher is received.
ORTESubscription *s;
NtpTime deadline, minimumSeparation;
ORTEInit();
d = ORTEDomainAppCreate(ORTE_DEFAUL_DOMAIN,
NULL, NULL, ORTE_FALSE);
if (!d)
ORTETypeRegisterAdd(d, "HelloMsg", NULL, NULL,
64);
NTPTIME_BUILD(deadline, 20);
NTPTIME_DELAY(minimumSeparation, 0);
p = ORTESubscriptionCreate(
 d, // created subscribtion
 IMMEDIATE, // mode of subscription
 BEST_EFFORTS,// type of subcsription
 "Example HelloMsg",// name of topic
 "HelloMsg",// name of data type
 &instance2Recv,// pointer to output buffer
 &deadline, // deadline
 &minimumSeparation,// minimum separation
 recvCallBack, // callback function
 NULL); user parameters

Figure 6 The skeleton of the ORTE subscriber

The initial implementation has been developed on Linux
kernel 2.4, but it is able to run on both 2.2 and 2.6
versions as well. ORTE is designed as a library that
allows simple linking with the user application.The
current ORTE version was tested under Linux and
Windows 2000/XP. In future, we intend to test ORTE
on RTAI based on RTNET (special UDP
implementation for RTAI) and RTLinux. The ORTE
source code can be downloaded from [8] and
documentation is available at [9].

4. Measurements of the application
response time

Important requirements in real-time applications are the
application response time and throughput. The
application response time is the time measured from the
moment, when the application calls the middleware to
send a publication through the network layers, to the
time, when the subscribed applications get this
publication. The application response time can be
affected by the network load, the network bandwidth,
the implemented network stack, the processor speed,
and in most cases by the operating system.
This section shows experimental results, which have
been obtained from the testing of ORTE. Configuration
with one switch and four identical nodes (PC’s, with

Intel Celeron 566MHz, 192MB RAM, 100Mbit
Ethernet Card, running Linux Debian 2.6.5 with pre-
emptive kernel) was used for these experiments (see
Figure 7).

Figure 7 Measurement configuration

The application configuration is given in Figure 8.
Publisher P1 in node_1 publishes a publication
(containing publication creation time t1), which is
received by subscriber S2 in node_2. The publication
creation time t1 is extracted and is submitted for
publication created by publisher P2 in node_2. This
publication is received by subscriber S1 in node_1 at
time t2, and then the application response time is
calculated, as (t2-t1)/2, and saved for further analysis.
The application response time consists of three parts.
The first part is the processing time caused by the
operating system overhead, including the scheduling
time, the context switch and the propagation through the
SW layers such as UDP, IP. The second part is the
communication time (the media access time and the
transmission time) on Ethernet. Finally the last part is
similar to the first one, the processing time on the
subscriber site.

node_1

P1

S2 S1

P2

node_2

P1

P2 S1

S2

node_3

P2

S1 S2

P1

node_4

S2

S1 P2

P1

Figure 8 Configuration of publishers and
subscribers

A special program to start the application remotely was
written to ensure the same starting time at all nodes. The
application has the real-time priority using rtnice, and
stops after sending 5000 packets. The application
repetition time (how often is a publication published)
and packet size are given to the application as
parameters.

4.1. Measured results
The application response time of all send packets is
depicted in the Figure 9 and varies from 0.7ms to at
most 1.38ms. The mean value is 0.84 ms. This time is
composed of three parts as described above.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5
x 10

-3 Application Response Time,1024[B],10[ms] -experiment

packet number [s]

ap
pl

ic
at

io
n

re
sp

on
se

 ti
m

e
[s

]

Figure 9 The application response time for
packet size 1024B and application
repetition time 10ms (configuration in
Figure 7)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5
x 10

-3 Application Response Time,1024[B],10[ms] -experiment

packet number [s]

ap
pl

ic
at

io
n

re
sp

on
se

 ti
m

e
[s

]

Figure 10 The application response time
for packet size 1024B and application
repetition time 10ms, configuration
1 nodes

In order to investigate the duration of the separate parts
of the application response time we have run another
experiment based on one node. The application was the
same as described earlier containing two publishers and
two subscribers with the same functionality. The packet
in this experiment was not transmitted through the
Ethernet, but the internal loopback mechanism was used
to transmit data from P1 to S2 and from P2 to S1. The
results for the application response time in one node are
depicted in Figure 10.
The maximum application response time is 1.03ms and
the mean 0.67ms. The difference between the mean of
the application response time for the configuration with

4 nodes and for the configuration with 1 node is 0.17ms,
which is the communication time.
This result was validated by simulation in OPNET
Modeler. The HW configuration was made same as
depicted in Figure 7 and results for each node are shown
in Figure 11.

Figure 11 The simulated application
response times (configuration Figure 7)

Since the simulation takes only the communication time
under consideration (i.e. there is no processing time
added to the application response time), therefore the
application response time, depicted in Figure 11, is
directly the communication time (mean 0.19ms). It
affirms the hypothesis given above that the
communication time is 0.17ms. A simple calculation
shows that the communication takes only approximately
25%, the remaining 75% is the processing time.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10-3

application repetition time [ms]

ap
pl

ic
at

io
n

re
sp

on
se

 ti
m

e:
 m

ax
, m

ea
n

 [s
]

Application Response Time(max,mean)-experiment

max 128
mean 128
max 256
mean 256
max 512
mean 512
max 1024
mean 1024

Figure 12 The application response time for
different application repetition times

The application response time as a function of the
application repetition time is depicted in the Figure 12.
There is no significant dependency on application
repetition time, which varies from 0ms to 100ms (0ms
means as fast as possible).
The same conclusion can be done for different packet
sizes, see Figure 13.The application response time
grows up slowly with the growing packet size, because
the communication time grows slowly too. Remember
that Ethernet has huge throughput compared to the
traffic generated in our experiments.

100 200 300 400 500 600 700 800 900 1000 1100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

-3

packet size [B]

ap
pl

ic
at

io
n

re
sp

on
se

 ti
m

e:
 m

ax
, m

ea
n

 [s
]

Application Response Time(max,mean)-experiment
max 0
mean 0
max 1
mean 1
max 10
mean 10
max 100
mean 100

Figure 13 The application response time
for different packet size

Figure 14 shows the mean application response time as
a function of both the application repetition time and the
packet size. Surprisingly, the application response time
grows with prolongation of the application repetition
time. This is due to the influence of the processor cache
memory on the processing time.

0
200

400
600

800
1000

1200

100

101

102
4

6

8

10

12

14

x 10-4

packet size [B]

Application Response Time -experiment

application repetition time [ms]

ap
pl

ic
at

io
n

re
sp

on
se

 ti
m

e:
 m

ea
n

[s
]

Figure 14 The application response time

5. Summary

This paper has described the experiments with ORTE
(Open Real-Time Ethernet), an open-source
implementation of the RTPS standard, referring to the
documentation and the source code available at
Sourceforge.
As a result we have we achieved the separation of the
processing time and the communication time. The
processing time gives higher jitter to the application
response time. The communication time gives no jitter
to the application response time due to the switched
Ethernet.
Therefore, further development of ORTE will be
focused on new implementations in order to obtain

deterministic and possibly shorter processing time. The
former can be achieved by using real-time operating
systems (like RTAI or RT Linux), and the latter by
using faster hardware.

6. Acknowledgement

This work was supported by the Ministry of Education
of the Czech Republic under project LN00B096 and IST
35102 – OCERA. The OPNET Modeler is licensed
under OPNET University Program.

References

[1] Czech Technical Univesity in Prague, Overall
OpenSource project information containing ORTE,
http://sourceforge.net/projects/ocera/,
2003

[2] L., Kleinrock, F.A., Tobagi, “Packet switching in
radio Channels: Part I-Carrier Sense Multiple
Access Modes and Their Throughput Delay
Charakteristic”, IEEE Transaction on
Communication, Corn-23, Dec., pp 1400-1416, 1975

[3] Real-Time Innovations, Inc., Real-Time Publish-
Subscribe Wire Protocol Specification, Protocol
Version 1.0, Draft doc, version 1.17.
http://www.rti.com/products/ndds/litera
ture.html, 2002

[4] Real-Time Innovations, Inc., NDDS Getting Started
Guide, Version 3.0, 2002

[5] Real-Time Innovations, Inc, NDDS Data Delivery
Performance, 2002

[6] S., Schneider, G.,Pardo-Castellote, M., Hamilton.
“Can Ethernet Be Real Time?”, Real-Time
Innovations, Inc., 2001

[7] P., Smolik, Z.,Sebek, Z.,Hanzalek, “ORTE - Open
Source Implementation of Real-Time Publish-
Subscribe protocol”, 2nd Intl Workshop on real-time
LANs in the Internet age, Polytechnic Institute of
Porto, Portugal, 2003

[8] ORTE open-source code ,
http://cvs.sourceforge.net/viewcvs.py/o
cera/ocera/components/comm/eth/orte/

[9] ORTE documentation,
http://www.ocera.org/archive/ctu/public
/components/ethdev/ethdev-0.1.tgz

[10] S., Sierla, “Middleware solutions for automation
applications –case RTPS”, Diploma thesis, Helsinky
University of Technology, 2003

[11] O.Dolejs, Z.Hanzalek, “Simulation of Ethernet for
Real-Time Applications”, IEEE ICIT’03, December
Maribor Slovenia, 2003

	chapterStart:
	chapterStartFooter: 0-7803-8734-1/04/$20.00 ©2004 IEEE.

