
White paper

POSIX signals in a threaded environment

OCERA Legal Status.
by Alfons Crespo, Ismael Ripoll, Miguel Masmano, Josep Vidal.

Published 23. April 2004
Copyright © 2003 by OCERA Consortium

Table of Contents
Chapter 1. Introduction...1
Chapter 2. POSIX signals with threads..1
Chapter 3. Problems in the current POSIX standard definition...2
Chapter 4. Implemented signal behavior..2

OCERA IST 35102 iii

Document Presentation

Project Coordinator

Organisation:UPVLC
Responsible person:Alfons Crespo

Address:Camino Vera, 14, 46022 Valencia, Spain
Phone:+34 963877576

Fax:+34 963877576
Email:alfons@disca.upv.es

Participant List

Role Id. Participant Name Acronym Country
CO 1 Universidad Politécnica de Valencia UPVLC E
CR 2 Scuola Superiore Santa Anna SSSA I
CR 3 Czech Technical University in Prague CTU CZ
CR 4 CEA/DRT/LIST/DTSI CEA FR
CR 5 Unicontrols UC CZ
CR 6 MNIS MNIS FR
CR 7 Visual Tools S.A. VT E

Document version

Release Date Reason of change
1_0 03/03/04First release

OCERA IST 35102 iv

Chapter 1. Introduction
The signal mechanism is the method used in POSIX to deliver asynchronous events to a
running process. Signals are similar in concept to a hardware interrupt: when a signal is
delivered to a process, the normal flow of the process is interrupted and the signal handler
function is called, once the handler function finishes the process continues with its original
execution flow.

Signals were designed and developed to work in a UNIX heavy process environment, where
each process has its own protected memory space, its priority (or round-robing quantum), a
single process state, etc. In this execution environment, every process has its own set of
signals handlers and blocking mask.

In a system where the execution entities are not processes but threads that share most of their
state, the original definition (and operation) of signals is no longer valid. The POSIX
standard has tried to extend the signal semantic for threads. The authors of this paper believe
that the standard can be improved. A better combination of signals and threads can be
defined.

Chapter 2. POSIX signals with threads
Signals generated outside the process are delivered to the process as a whole. The external
source of signals will not be aware whether the process is single threaded or a multi-thread.
Signals generated by a specific thread shall be delivered to that particular thread.

Processes can defined which action will be done upon the arrival of each signal. The
possible actions are:

• Block(sigprocmask): When signals are blocked, they are not immediately
delivered to the process. The system stores the signal until the process unblocks it.
Real-time signal specification requires that the system has to store all the signals sent
to a process and once unblocked all the signals has to be delivered in chronological
order.

• Ignore (SIG_IGN): Ignored signals will never be delivered to the process, that is,
signals are lost.

• Caught (sigaction): The process executes the corresponding signal function
handler upon the arrival of the signal.

• Default action (SIG_DFL): A signal the is not blocked, not ignored and is not caught
by the process, kills the process (except some special signals that stops or continues
the process).

In a multi-threaded process each thread has its own signal mask (set of blocked signals) that
is managed with the function (pthread_sigmask). But on the other hand, the action
done if the signal is not blocked is shared is global and shared by all threads. That is: all
threads share the same signal handler functions; a ignored signal is never delivered to any
thread; and the default action will kill the whole process.

When several threads has unblocked a given caught signal (a signal with a signal handler)
the POSIX standard do not specify which thread should receive the signal. Most books and
tutorials recommends to use one single threads to handle all signals by blocking all signals
in all threads except in the dedicated thread that accepts (unblocks) all handled signals.

When a new thread is created (pthread_create) The signal state of the new thread shall

OCERA IST 35102 1

be initialised as follows: 1) The signal mask shall be inherited from the creating thread; 2)
The set of signals pending for the new thread shall be empty.

If any of the SIGFPE, SIGILL, SIGSEGV, or SIGBUS signals are generated while they
are blocked, the result is undefined.

The behaviour of a process is undefined after it ignores a SIGFPE, SIGILL, SIGSEGV, or
SIGBUS.

Chapter 3. Problems in the current POSIX
standard definition

In order to deliver a signal the system has to find a suitable thread, a thread that has not
blocked the given signal. This operation may involve a loop to check the state of all the
thread masks.

Killing the whole process (all the thread) due to a not handled exception seems to be too
drastic. A better choice may be to kill the conflicting thread rather than all the threads.

The default action done by the system when a signal is neither handled nor ignored is to kill
the process. If we consider that most embedded and real-time programmers are not experts
in POSIX programming1 and that signals are one of the most obscure and less understand
POSIX feature, then it is probable that most programmers will not care about signals and so
the application will not contain code to ignore or handle any signal.

Chapter 4. Implemented signal behavior
There are three different kind of signals depending on how they are generated and handled:

Hardware triggered signals: SIGFPE, SIGILL, SIGSEGV, or SIGBUS.

Most hardware generated signals are generated by the processor due to a programming
error, like floating point exception, illegal instruction or memory access fault. These
kind of hardware events should be immediately delivered and attended by the
offending thread. Hardware generated signals can neither be ignored nor blocked.
Signals triggered in response to a processor fault must be handled properly, otherwise
the processor will enter into an endless loop which will hang the system. Next is an
example illustrates the problem:

Suppose that a thread tries to execute a floating point division and the divisor is zero.
Then the processor raises hardware exception and the signal handler is called. The
signal handler must change the state of the thread to a safe state (for example
changing the value of the divisor variable, changing the processor program counter
register to go to a valid instruction, or via longjmp() to go to a previous safe state).
If the signal would be ignored or the signal handler were an empty function (a
function that did not solved the problem) then the same instruction with the same
parameters would be called on return from exception handler, which would raise again
the same hardware exception. At this time, the system looping executing the same
faulty instruction.

1 The Mars Pathfinder programmers didn't know what is the priority inversion problem.

OCERA IST 35102 2

The default action is to kill offending thread. Please, note that POSIX requires to kill
the whole process.

User generated signals: SIGURS1, SIGUSR2, SIGRTMIN...SIGRTMAX.

These are general purpose signals that can be freely used by user threads. They can be
blocked, ignored and caught.

To avoid delivery randomness and to speedup implementation, user generated signal
handlers are “owned” by the thread that installed it last. That is, when a thread
installs a signal handler, only this thread can receive the signal. If the owner thread
blocks the signal then the signals is blocked (regardless the blocking mask of other
threads). The function pthread_kill will only send the signal if the target thread is the
last one that installed the signal handler. The addition of the signal owner greatly
simplifies the code to deliver threads because the sigaction structure directly identifies
the receiving thread.

Initially, the default action is to ignore them (SIG_IGN). We think that this default
action is a more safe behaviour.

The default action is to kill the thread that received the signal.

System generated signals: WAKEUP, CANCEL, SUSPEND, TIMER, NULL.

These signals are used to control the running state of the threads. These are used
internally by the RTLinux scheduler, but also can be used by user threads. The action
of this signals is defined by the system and can not be redefined by the user: installing
a handler, ignoring or blocking them.

Newly created threads do not inherit the signal blocking mask of it creator thread. All
threads start with an empty (no signal is blocked) signal mask.

OCERA IST 35102 3

